Timezone: »
In few-shot domain adaptation (FDA), classifiers for the target domain are trained with \emph{accessible} labeled data in the source domain (SD) and few labeled data in the target domain (TD). However, data usually contain private information in the current era, e.g., data distributed on personal phones. Thus, the private data will be leaked if we directly access data in SD to train a target-domain classifier (required by FDA methods). In this paper, to prevent privacy leakage in SD, we consider a very challenging problem setting, where the classifier for the TD has to be trained using few labeled target data and a well-trained SD classifier, named few-shot hypothesis adaptation (FHA). In FHA, we cannot access data in SD, as a result, the private information in SD will be protected well. To this end, we propose a target-oriented hypothesis adaptation network (TOHAN) to solve the FHA problem, where we generate highly-compatible unlabeled data (i.e., an intermediate domain) to help train a target-domain classifier. TOHAN maintains two deep networks simultaneously, in which one focuses on learning an intermediate domain and the other takes care of the intermediate-to-target distributional adaptation and the target-risk minimization. Experimental results show that TOHAN outperforms competitive baselines significantly.
Author Information
Haoang Chi (NUDT)
Feng Liu (University of Technology Sydney)
Wenjing Yang (National University of Defense Technology)
Long Lan (National University of Defense Technology, Tsinghua University)
Tongliang Liu (The University of Sydney)
Bo Han (HKBU / RIKEN)
William Cheung (Hong Kong Baptist University)
James Kwok (Hong Kong University of Science and Technology)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: TOHAN: A One-step Approach towards Few-shot Hypothesis Adaptation »
Tue. Dec 7th 04:30 -- 06:00 PM Room
More from the Same Authors
-
2022 Poster: RSA: Reducing Semantic Shift from Aggressive Augmentations for Self-supervised Learning »
Yingbin Bai · Erkun Yang · Zhaoqing Wang · Yuxuan Du · Bo Han · Cheng Deng · Dadong Wang · Tongliang Liu -
2022 Poster: Learning Causally Invariant Representations for Out-of-Distribution Generalization on Graphs »
Yongqiang Chen · Yonggang Zhang · Yatao Bian · Han Yang · MA Kaili · Binghui Xie · Tongliang Liu · Bo Han · James Cheng -
2022 Poster: Adversarial Training with Complementary Labels: On the Benefit of Gradually Informative Attacks »
Jianan Zhou · Jianing Zhu · Jingfeng ZHANG · Tongliang Liu · Gang Niu · Bo Han · Masashi Sugiyama -
2022 Poster: Estimating Noise Transition Matrix with Label Correlations for Noisy Multi-Label Learning »
Shikun Li · Xiaobo Xia · Hansong Zhang · Yibing Zhan · Shiming Ge · Tongliang Liu -
2022 Poster: Towards Lightweight Black-Box Attack Against Deep Neural Networks »
Chenghao Sun · Yonggang Zhang · Wan Chaoqun · Qizhou Wang · Ya Li · Tongliang Liu · Bo Han · Xinmei Tian -
2022 Poster: APT-36K: A Large-scale Benchmark for Animal Pose Estimation and Tracking »
Yuxiang Yang · Junjie Yang · Yufei Xu · Jing Zhang · Long Lan · Dacheng Tao -
2022 : Pre-training Robust Feature Extractor Against Clean-label Data Poisoning Attacks »
Ting Zhou · Hanshu Yan · Lei LIU · Jingfeng Zhang · Bo Han -
2022 Spotlight: Lightning Talks 6A-4 »
Xiu-Shen Wei · Konstantina Dritsa · Guillaume Huguet · ABHRA CHAUDHURI · Zhenbin Wang · Kevin Qinghong Lin · Yutong Chen · Jianan Zhou · Yongsen Mao · Junwei Liang · Jinpeng Wang · Mao Ye · Yiming Zhang · Aikaterini Thoma · H.-Y. Xu · Daniel Sumner Magruder · Enwei Zhang · Jianing Zhu · Ronglai Zuo · Massimiliano Mancini · Hanxiao Jiang · Jun Zhang · Fangyun Wei · Faen Zhang · Ioannis Pavlopoulos · Zeynep Akata · Xiatian Zhu · Jingfeng ZHANG · Alexander Tong · Mattia Soldan · Chunhua Shen · Yuxin Peng · Liuhan Peng · Michael Wray · Tongliang Liu · Anjan Dutta · Yu Wu · Oluwadamilola Fasina · Panos Louridas · Angel Chang · Manik Kuchroo · Manolis Savva · Shujie LIU · Wei Zhou · Rui Yan · Gang Niu · Liang Tian · Bo Han · Eric Z. XU · Guy Wolf · Yingying Zhu · Brian Mak · Difei Gao · Masashi Sugiyama · Smita Krishnaswamy · Rong-Cheng Tu · Wenzhe Zhao · Weijie Kong · Chengfei Cai · WANG HongFa · Dima Damen · Bernard Ghanem · Wei Liu · Mike Zheng Shou -
2022 Spotlight: Adversarial Training with Complementary Labels: On the Benefit of Gradually Informative Attacks »
Jianan Zhou · Jianing Zhu · Jingfeng ZHANG · Tongliang Liu · Gang Niu · Bo Han · Masashi Sugiyama -
2022 Spotlight: Lightning Talks 5B-3 »
Yanze Wu · Jie Xiao · Nianzu Yang · Jieyi Bi · Jian Yao · Yiting Chen · Qizhou Wang · Yangru Huang · Yongqiang Chen · Peixi Peng · Yuxin Hong · Xintao Wang · Feng Liu · Yining Ma · Qibing Ren · Xueyang Fu · Yonggang Zhang · Kaipeng Zeng · Jiahai Wang · GEN LI · Yonggang Zhang · Qitian Wu · Yifan Zhao · Chiyu Wang · Junchi Yan · Feng Wu · Yatao Bian · Xiaosong Jia · Ying Shan · Zhiguang Cao · Zheng-Jun Zha · Guangyao Chen · Tianjun Xiao · Han Yang · Jing Zhang · Jinbiao Chen · MA Kaili · Yonghong Tian · Junchi Yan · Chen Gong · Tong He · Binghui Xie · Yuan Sun · Francesco Locatello · Tongliang Liu · Yeow Meng Chee · David P Wipf · Tongliang Liu · Bo Han · Bo Han · Yanwei Fu · James Cheng · Zheng Zhang -
2022 Spotlight: Watermarking for Out-of-distribution Detection »
Qizhou Wang · Feng Liu · Yonggang Zhang · Jing Zhang · Chen Gong · Tongliang Liu · Bo Han -
2022 Spotlight: Learning Causally Invariant Representations for Out-of-Distribution Generalization on Graphs »
Yongqiang Chen · Yonggang Zhang · Yatao Bian · Han Yang · MA Kaili · Binghui Xie · Tongliang Liu · Bo Han · James Cheng -
2022 Spotlight: Lightning Talks 4B-4 »
Ziyue Jiang · Zeeshan Khan · Yuxiang Yang · Chenze Shao · Yichong Leng · Zehao Yu · Wenguan Wang · Xian Liu · Zehua Chen · Yang Feng · Qianyi Wu · James Liang · C.V. Jawahar · Junjie Yang · Zhe Su · Songyou Peng · Yufei Xu · Junliang Guo · Michael Niemeyer · Hang Zhou · Zhou Zhao · Makarand Tapaswi · Dongfang Liu · Qian Yang · Torsten Sattler · Yuanqi Du · Haohe Liu · Jing Zhang · Andreas Geiger · Yi Ren · Long Lan · Jiawei Chen · Wayne Wu · Dahua Lin · Dacheng Tao · Xu Tan · Jinglin Liu · Ziwei Liu · 振辉 叶 · Danilo Mandic · Lei He · Xiangyang Li · Tao Qin · sheng zhao · Tie-Yan Liu -
2022 Spotlight: Lightning Talks 4A-2 »
Barakeel Fanseu Kamhoua · Hualin Zhang · Taiki Miyagawa · Tomoya Murata · Xin Lyu · Yan Dai · Elena Grigorescu · Zhipeng Tu · Lijun Zhang · Taiji Suzuki · Wei Jiang · Haipeng Luo · Lin Zhang · Xi Wang · Young-San Lin · Huan Xiong · Liyu Chen · Bin Gu · Jinfeng Yi · Yongqiang Chen · Sandeep Silwal · Yiguang Hong · Maoyuan Song · Lei Wang · Tianbao Yang · Han Yang · MA Kaili · Samson Zhou · Deming Yuan · Bo Han · Guodong Shi · Bo Li · James Cheng -
2022 Spotlight: Exact Shape Correspondence via 2D graph convolution »
Barakeel Fanseu Kamhoua · Lin Zhang · Yongqiang Chen · Han Yang · MA Kaili · Bo Han · Bo Li · James Cheng -
2022 Spotlight: APT-36K: A Large-scale Benchmark for Animal Pose Estimation and Tracking »
Yuxiang Yang · Junjie Yang · Yufei Xu · Jing Zhang · Long Lan · Dacheng Tao -
2022 Spotlight: RSA: Reducing Semantic Shift from Aggressive Augmentations for Self-supervised Learning »
Yingbin Bai · Erkun Yang · Zhaoqing Wang · Yuxuan Du · Bo Han · Cheng Deng · Dadong Wang · Tongliang Liu -
2022 Spotlight: Lightning Talks 2B-4 »
Feiyi Xiao · Amrutha Saseendran · Kwangho Kim · Keyu Yan · Changjian Shui · Guangxi Li · Shikun Li · Edward Kennedy · Man Zhou · Gezheng Xu · Ruilin Ye · Xiaobo Xia · Junjie Tang · Kathrin Skubch · Stefan Falkner · Hansong Zhang · Jose Zubizarreta · Huaying Fang · Xuanqiang Zhao · Jie Huang · Qi CHEN · Yibing Zhan · Jiaqi Li · Xin Wang · Ruibin Xi · Feng Zhao · Margret Keuper · Charles Ling · Shiming Ge · Chengjun Xie · Tongliang Liu · Tal Arbel · Chongyi Li · Danfeng Hong · Boyu Wang · Christian Gagné -
2022 Spotlight: Estimating Noise Transition Matrix with Label Correlations for Noisy Multi-Label Learning »
Shikun Li · Xiaobo Xia · Hansong Zhang · Yibing Zhan · Shiming Ge · Tongliang Liu -
2022 Poster: Multi-Objective Deep Learning with Adaptive Reference Vectors »
Weiyu Chen · James Kwok -
2022 Poster: MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models »
Erdun Gao · Ignavier Ng · Mingming Gong · Li Shen · Wei Huang · Tongliang Liu · Kun Zhang · Howard Bondell -
2022 Poster: Watermarking for Out-of-distribution Detection »
Qizhou Wang · Feng Liu · Yonggang Zhang · Jing Zhang · Chen Gong · Tongliang Liu · Bo Han -
2022 Poster: Exact Shape Correspondence via 2D graph convolution »
Barakeel Fanseu Kamhoua · Lin Zhang · Yongqiang Chen · Han Yang · MA Kaili · Bo Han · Bo Li · James Cheng -
2022 Poster: Counterfactual Fairness with Partially Known Causal Graph »
Aoqi Zuo · Susan Wei · Tongliang Liu · Bo Han · Kun Zhang · Mingming Gong -
2022 Poster: Out-of-Distribution Detection with An Adaptive Likelihood Ratio on Informative Hierarchical VAE »
Yewen Li · Chaojie Wang · Xiaobo Xia · Tongliang Liu · xin miao · Bo An -
2022 Poster: Class-Dependent Label-Noise Learning with Cycle-Consistency Regularization »
De Cheng · Yixiong Ning · Nannan Wang · Xinbo Gao · Heng Yang · Yuxuan Du · Bo Han · Tongliang Liu -
2022 Poster: Synergy-of-Experts: Collaborate to Improve Adversarial Robustness »
Sen Cui · Jingfeng ZHANG · Jian Liang · Bo Han · Masashi Sugiyama · Changshui Zhang -
2022 Poster: Pluralistic Image Completion with Gaussian Mixture Models »
Xiaobo Xia · Wenhao Yang · Jie Ren · Yewen Li · Yibing Zhan · Bo Han · Tongliang Liu -
2022 Poster: Is Out-of-Distribution Detection Learnable? »
Zhen Fang · Yixuan Li · Jie Lu · Jiahua Dong · Bo Han · Feng Liu -
2021 Poster: Understanding and Improving Early Stopping for Learning with Noisy Labels »
Yingbin Bai · Erkun Yang · Bo Han · Yanhua Yang · Jiatong Li · Yinian Mao · Gang Niu · Tongliang Liu -
2021 Poster: Effective Meta-Regularization by Kernelized Proximal Regularization »
Weisen Jiang · James Kwok · Yu Zhang -
2021 Poster: Graph Adversarial Self-Supervised Learning »
Longqi Yang · Liangliang Zhang · Wenjing Yang -
2021 Poster: Universal Semi-Supervised Learning »
Zhuo Huang · Chao Xue · Bo Han · Jian Yang · Chen Gong -
2021 Poster: Probabilistic Margins for Instance Reweighting in Adversarial Training »
qizhou wang · Feng Liu · Bo Han · Tongliang Liu · Chen Gong · Gang Niu · Mingyuan Zhou · Masashi Sugiyama -
2021 Poster: Meta Two-Sample Testing: Learning Kernels for Testing with Limited Data »
Feng Liu · Wenkai Xu · Jie Lu · Danica J. Sutherland -
2021 Poster: Instance-dependent Label-noise Learning under a Structural Causal Model »
Yu Yao · Tongliang Liu · Mingming Gong · Bo Han · Gang Niu · Kun Zhang -
2021 Poster: Confident Anchor-Induced Multi-Source Free Domain Adaptation »
Jiahua Dong · Zhen Fang · Anjin Liu · Gan Sun · Tongliang Liu -
2020 Poster: Dual T: Reducing Estimation Error for Transition Matrix in Label-noise Learning »
Yu Yao · Tongliang Liu · Bo Han · Mingming Gong · Jiankang Deng · Gang Niu · Masashi Sugiyama -
2020 Poster: Part-dependent Label Noise: Towards Instance-dependent Label Noise »
Xiaobo Xia · Tongliang Liu · Bo Han · Nannan Wang · Mingming Gong · Haifeng Liu · Gang Niu · Dacheng Tao · Masashi Sugiyama -
2020 Spotlight: Part-dependent Label Noise: Towards Instance-dependent Label Noise »
Xiaobo Xia · Tongliang Liu · Bo Han · Nannan Wang · Mingming Gong · Haifeng Liu · Gang Niu · Dacheng Tao · Masashi Sugiyama -
2020 Poster: Timeseries Anomaly Detection using Temporal Hierarchical One-Class Network »
Lifeng Shen · Zhuocong Li · James Kwok -
2020 Poster: Bridging the Gap between Sample-based and One-shot Neural Architecture Search with BONAS »
Han Shi · Renjie Pi · Hang Xu · Zhenguo Li · James Kwok · Tong Zhang -
2020 Poster: Domain Generalization via Entropy Regularization »
Shanshan Zhao · Mingming Gong · Tongliang Liu · Huan Fu · Dacheng Tao -
2019 Poster: Communication-Efficient Distributed Blockwise Momentum SGD with Error-Feedback »
Shuai Zheng · Ziyue Huang · James Kwok -
2019 Poster: Are Anchor Points Really Indispensable in Label-Noise Learning? »
Xiaobo Xia · Tongliang Liu · Nannan Wang · Bo Han · Chen Gong · Gang Niu · Masashi Sugiyama -
2019 Poster: Normalization Helps Training of Quantized LSTM »
Lu Hou · Jinhua Zhu · James Kwok · Fei Gao · Tao Qin · Tie-Yan Liu -
2019 Poster: Control Batch Size and Learning Rate to Generalize Well: Theoretical and Empirical Evidence »
Fengxiang He · Tongliang Liu · Dacheng Tao -
2018 Poster: Scalable Robust Matrix Factorization with Nonconvex Loss »
Quanming Yao · James Kwok -
2015 Poster: Fast Second Order Stochastic Backpropagation for Variational Inference »
Kai Fan · Ziteng Wang · Jeff Beck · James Kwok · Katherine Heller -
2012 Poster: Mandatory Leaf Node Prediction in Hierarchical Multilabel Classification »
Wei Bi · James Kwok -
2009 Poster: Accelerated Gradient Methods for Stochastic Optimization and Online Learning »
Chonghai Hu · James Kwok · Weike Pan