Timezone: »
Linear mixed-effect models provide a natural baseline for estimating disease progression using longitudinal data. They provide interpretable models at the cost of modeling assumptions on the progression profiles and their variability across subjects. A significant improvement is to embed the data in a Riemannian manifold and learn patient-specific trajectories distributed around a central geodesic. A few interpretable parameters characterize subject trajectories at the cost of a prior choice of the metric, which determines the shape of the trajectories. We extend this approach by learning the metric from the data allowing more flexibility while keeping the interpretability. Specifically, we learn the metric as the push-forward of the Euclidean metric by a diffeomorphism. This diffeomorphism is estimated iteratively as the composition of radial basis functions belonging to a reproducible kernel Hilbert space. The metric update allows us to improve the forecasting of imaging and clinical biomarkers in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Our results compare favorably to the 56 methods benchmarked in the TADPOLE challenge.
Author Information
Samuel Gruffaz (Inria - ENS Paris-Saclay)
Pierre-Emmanuel Poulet (INRIA)
Etienne Maheux (INRIA)
Bruno Jedynak (Portland state university)
Stanley DURRLEMAN (INRIA)
More from the Same Authors
-
2018 Workshop: Machine Learning for Health (ML4H): Moving beyond supervised learning in healthcare »
Andrew Beam · Tristan Naumann · Marzyeh Ghassemi · Matthew McDermott · Madalina Fiterau · Irene Y Chen · Brett Beaulieu-Jones · Michael Hughes · Farah Shamout · Corey Chivers · Jaz Kandola · Alexandre Yahi · Samuel Finlayson · Bruno Jedynak · Peter Schulam · Natalia Antropova · Jason Fries · Adrian Dalca · Irene Chen -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka -
2015 Poster: Learning spatiotemporal trajectories from manifold-valued longitudinal data »
Jean-Baptiste SCHIRATTI · Stéphanie ALLASSONNIERE · Olivier Colliot · Stanley DURRLEMAN