Timezone: »
In recent years, neural implicit representations gained popularity in 3D reconstruction due to their expressiveness and flexibility. However, the implicit nature of neural implicit representations results in slow inference times and requires careful initialization. In this paper, we revisit the classic yet ubiquitous point cloud representation and introduce a differentiable point-to-mesh layer using a differentiable formulation of Poisson Surface Reconstruction (PSR) which allows for a GPU-accelerated fast solution of the indicator function given an oriented point cloud. The differentiable PSR layer allows us to efficiently and differentiably bridge the explicit 3D point representation with the 3D mesh via the implicit indicator field, enabling end-to-end optimization of surface reconstruction metrics such as Chamfer distance. This duality between points and meshes hence allows us to represent shapes as oriented point clouds, which are explicit, lightweight and expressive. Compared to neural implicit representations, our Shape-As-Points (SAP) model is more interpretable, lightweight, and accelerates inference time by one order of magnitude. Compared to other explicit representations such as points, patches, and meshes, SAP produces topology-agnostic, watertight manifold surfaces. We demonstrate the effectiveness of SAP on the task of surface reconstruction from unoriented point clouds and learning-based reconstruction.
Author Information
Songyou Peng (ETH Zurich & MPI for Intelligent Systems)
Chiyu Jiang (Waymo)
Yiyi Liao (University of Tübingen)
Michael Niemeyer (Max Planck for Intelligent Systems)
Marc Pollefeys (ETH Zurich)
Andreas Geiger (MPI Tübingen)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Oral: Shape As Points: A Differentiable Poisson Solver »
Fri. Dec 10th 08:20 -- 08:35 AM Room
More from the Same Authors
-
2021 : STEP: Segmenting and Tracking Every Pixel »
Mark Weber · Jun Xie · Maxwell Collins · Yukun Zhu · Paul Voigtlaender · Hartwig Adam · Bradley Green · Andreas Geiger · Bastian Leibe · Daniel Cremers · Aljosa Osep · Laura Leal-Taixé · Liang-Chieh Chen -
2023 Poster: Self-supervised Neural Maps for Visual Positioning and Semantic Understanding »
Paul-Edouard Sarlin · Eduard Trulls · Marc Pollefeys · Simon Lynen · Jan Hosang -
2023 Poster: OpenMask3D: Open-Vocabulary 3D Instance Segmentation »
Ayça Takmaz · Elisabetta Fedele · Robert Sumner · Marc Pollefeys · Federico Tombari · Francis Engelmann -
2023 Poster: The Drunkard’s Odometry: Estimating Camera Motion in Deforming Scenes »
David Recasens Lafuente · Martin R. Oswald · Marc Pollefeys · Javier Civera -
2022 Spotlight: Lightning Talks 4B-4 »
Ziyue Jiang · Zeeshan Khan · Yuxiang Yang · Chenze Shao · Yichong Leng · Zehao Yu · Wenguan Wang · Xian Liu · Zehua Chen · Yang Feng · Qianyi Wu · James Liang · C.V. Jawahar · Junjie Yang · Zhe Su · Songyou Peng · Yufei Xu · Junliang Guo · Michael Niemeyer · Hang Zhou · Zhou Zhao · Makarand Tapaswi · Dongfang Liu · Qian Yang · Torsten Sattler · Yuanqi Du · Haohe Liu · Jing Zhang · Andreas Geiger · Yi Ren · Long Lan · Jiawei Chen · Wayne Wu · Dahua Lin · Dacheng Tao · Xu Tan · Jinglin Liu · Ziwei Liu · 振辉 叶 · Danilo Mandic · Lei He · Xiangyang Li · Tao Qin · sheng zhao · Tie-Yan Liu -
2022 Spotlight: MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction »
Zehao Yu · Songyou Peng · Michael Niemeyer · Torsten Sattler · Andreas Geiger -
2022 Poster: MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction »
Zehao Yu · Songyou Peng · Michael Niemeyer · Torsten Sattler · Andreas Geiger -
2021 Poster: On the Frequency Bias of Generative Models »
Katja Schwarz · Yiyi Liao · Andreas Geiger -
2021 Poster: ATISS: Autoregressive Transformers for Indoor Scene Synthesis »
Despoina Paschalidou · Amlan Kar · Maria Shugrina · Karsten Kreis · Andreas Geiger · Sanja Fidler -
2021 Poster: Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects »
Denys Rozumnyi · Martin R. Oswald · Vittorio Ferrari · Marc Pollefeys -
2021 Poster: Projected GANs Converge Faster »
Axel Sauer · Kashyap Chitta · Jens Müller · Andreas Geiger -
2021 Poster: MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images »
Shaofei Wang · Marko Mihajlovic · Qianli Ma · Andreas Geiger · Siyu Tang -
2020 Poster: ShapeFlow: Learnable Deformation Flows Among 3D Shapes »
Chiyu Jiang · Jingwei Huang · Andrea Tagliasacchi · Leonidas Guibas -
2020 Spotlight: ShapeFlow: Learnable Deformation Flows Among 3D Shapes »
Chiyu Jiang · Jingwei Huang · Andrea Tagliasacchi · Leonidas Guibas -
2020 Poster: GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis »
Katja Schwarz · Yiyi Liao · Michael Niemeyer · Andreas Geiger -
2019 Poster: Reflection Separation using a Pair of Unpolarized and Polarized Images »
Youwei Lyu · Zhaopeng Cui · Si Li · Marc Pollefeys · Boxin Shi -
2019 Spotlight: Reflection Separation using a Pair of Unpolarized and Polarized Images »
Youwei Lyu · Zhaopeng Cui · Si Li · Marc Pollefeys · Boxin Shi -
2017 Poster: The Numerics of GANs »
Lars Mescheder · Sebastian Nowozin · Andreas Geiger -
2017 Spotlight: The Numerics of GANs »
Lars Mescheder · Sebastian Nowozin · Andreas Geiger -
2017 Poster: Matching neural paths: transfer from recognition to correspondence search »
Nikolay Savinov · Lubor Ladicky · Marc Pollefeys -
2012 Poster: Globally Convergent Dual MAP LP Relaxation Solvers using Fenchel-Young Margins »
Alex Schwing · Tamir Hazan · Marc Pollefeys · Raquel Urtasun -
2010 Poster: Gated Softmax Classification »
Roland Memisevic · Christopher Zach · Geoffrey E Hinton · Marc Pollefeys