Timezone: »

 
Poster
Unfolding Taylor's Approximations for Image Restoration
man zhou · Xueyang Fu · Zeyu Xiao · Gang Yang · Aiping Liu · Zhiwei Xiong

Wed Dec 08 12:30 AM -- 02:00 AM (PST) @

Deep learning provides a new avenue for image restoration, which demands a delicate balance between fine-grained details and high-level contextualized information during recovering the latent clear image. In practice, however, existing methods empirically construct encapsulated end-to-end mapping networks without deepening into the rationality, and neglect the intrinsic prior knowledge of restoration task. To solve the above problems, inspired by Taylor’s Approximations, we unfold Taylor’s Formula to construct a novel framework for image restoration. We find the main part and the derivative part of Taylor’s Approximations take the same effect as the two competing goals of high-level contextualized information and spatial details of image restoration respectively. Specifically, our framework consists of two steps, which are correspondingly responsible for the mapping and derivative functions. The former first learns the high-level contextualized information and the later combines it with the degraded input to progressively recover local high-order spatial details. Our proposed framework is orthogonal to existing methods and thus can be easily integrated with them for further improvement, and extensive experiments demonstrate the effectiveness and scalability of our proposed framework.

Author Information

man zhou (University of Science and Technology of China)
Xueyang Fu (University of Science and Technology of China)
Zeyu Xiao (University of Science and Technology of China)
Gang Yang (USTC)
Aiping Liu (University of Science and Technology of China)
Zhiwei Xiong (University of Science and Technology of China)

More from the Same Authors

  • 2022 Poster: Stochastic Window Transformer for Image Restoration »
    Jie Xiao · Xueyang Fu · Feng Wu · Zheng-Jun Zha
  • 2022 Spotlight: Lightning Talks 5B-3 »
    Yanze Wu · Jie Xiao · Nianzu Yang · Jieyi Bi · Jian Yao · Yiting Chen · Qizhou Wang · Yangru Huang · Yongqiang Chen · Peixi Peng · Yuxin Hong · Xintao Wang · Feng Liu · Yining Ma · Qibing Ren · Xueyang Fu · Yonggang Zhang · Kaipeng Zeng · Jiahai Wang · GEN LI · Yonggang Zhang · Qitian Wu · Yifan Zhao · Chiyu Wang · Junchi Yan · Feng Wu · Yatao Bian · Xiaosong Jia · Ying Shan · Zhiguang Cao · Zheng-Jun Zha · Guangyao Chen · Tianjun Xiao · Han Yang · Jing Zhang · Jinbiao Chen · MA Kaili · Yonghong Tian · Junchi Yan · Chen Gong · Tong He · Binghui Xie · Yuan Sun · Francesco Locatello · Tongliang Liu · Yeow Meng Chee · David P Wipf · Tongliang Liu · Bo Han · Bo Han · Yanwei Fu · James Cheng · Zheng Zhang
  • 2022 Spotlight: Stochastic Window Transformer for Image Restoration »
    Jie Xiao · Xueyang Fu · Feng Wu · Zheng-Jun Zha
  • 2022 Spotlight: Deep Fourier Up-Sampling »
    man zhou · Hu Yu · Jie Huang · Feng Zhao · Jinwei Gu · Chen Change Loy · Deyu Meng · Chongyi Li
  • 2022 Spotlight: Lightning Talks 2B-1 »
    Yehui Tang · Jian Wang · Zheng Chen · man zhou · Peng Gao · Chenyang Si · SHANGKUN SUN · Yixing Xu · Weihao Yu · Xinghao Chen · Kai Han · Hu Yu · Yulun Zhang · Chenhui Gou · Teli Ma · Yuanqi Chen · Yunhe Wang · Hongsheng Li · Jinjin Gu · Jianyuan Guo · Qiman Wu · Pan Zhou · Yu Zhu · Jie Huang · Chang Xu · Yichen Zhou · Haocheng Feng · Guodong Guo · yongbing zhang · Ziyi Lin · Feng Zhao · Ge Li · Junyu Han · Jinwei Gu · Jifeng Dai · Chao Xu · Xinchao Wang · Linghe Kong · Shuicheng Yan · Yu Qiao · Chen Change Loy · Xin Yuan · Errui Ding · Yunhe Wang · Deyu Meng · Jingdong Wang · Chongyi Li
  • 2022 Poster: Deep Fourier Up-Sampling »
    man zhou · Hu Yu · Jie Huang · Feng Zhao · Jinwei Gu · Chen Change Loy · Deyu Meng · Chongyi Li
  • 2019 Poster: On The Classification-Distortion-Perception Tradeoff »
    Dong Liu · Haochen Zhang · Zhiwei Xiong