Timezone: »
Accurate estimation of predictive uncertainty (model calibration) is essential for the safe application of neural networks. Many instances of miscalibration in modern neural networks have been reported, suggesting a trend that newer, more accurate models produce poorly calibrated predictions. Here, we revisit this question for recent state-of-the-art image classification models. We systematically relate model calibration and accuracy, and find that the most recent models, notably those not using convolutions, are among the best calibrated. Trends observed in prior model generations, such as decay of calibration with distribution shift or model size, are less pronounced in recent architectures. We also show that model size and amount of pretraining do not fully explain these differences, suggesting that architecture is a major determinant of calibration properties.
Author Information
Matthias Minderer (Google Research)
Josip Djolonga (Google Research, Brain Team)
Rob Romijnders (University of Amsterdam)
Frances Hubis (Google Research Zurich)
Xiaohua Zhai (Google Brain)
Neil Houlsby (Google)
Dustin Tran (Google Brain)
Mario Lucic (Google Brain)
More from the Same Authors
-
2021 : A Unified Few-Shot Classification Benchmark to Compare Transfer and Meta Learning Approaches »
Vincent Dumoulin · Neil Houlsby · Utku Evci · Xiaohua Zhai · Ross Goroshin · Sylvain Gelly · Hugo Larochelle -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning »
Zachary Nado · Neil Band · Mark Collier · Josip Djolonga · Mike Dusenberry · Sebastian Farquhar · Qixuan Feng · Angelos Filos · Marton Havasi · Rodolphe Jenatton · Ghassen Jerfel · Jeremiah Liu · Zelda Mariet · Jeremy Nixon · Shreyas Padhy · Jie Ren · Tim G. J. Rudner · Yeming Wen · Florian Wenzel · Kevin Murphy · D. Sculley · Balaji Lakshminarayanan · Jasper Snoek · Yarin Gal · Dustin Tran -
2021 : Deep Classifiers with Label Noise Modeling and Distance Awareness »
Vincent Fortuin · Mark Collier · Florian Wenzel · James Allingham · Jeremiah Liu · Dustin Tran · Balaji Lakshminarayanan · Jesse Berent · Rodolphe Jenatton · Effrosyni Kokiopoulou -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2022 : Panel »
Erin Grant · Richard Turner · Neil Houlsby · Priyanka Agrawal · Abhijeet Awasthi · Salomey Osei -
2022 Poster: VCT: A Video Compression Transformer »
Fabian Mentzer · George D Toderici · David Minnen · Sergi Caelles · Sung Jin Hwang · Mario Lucic · Eirikur Agustsson -
2022 Poster: UViM: A Unified Modeling Approach for Vision with Learned Guiding Codes »
Alexander Kolesnikov · André Susano Pinto · Lucas Beyer · Xiaohua Zhai · Jeremiah Harmsen · Neil Houlsby -
2022 Poster: Object Scene Representation Transformer »
Mehdi S. M. Sajjadi · Daniel Duckworth · Aravindh Mahendran · Sjoerd van Steenkiste · Filip Pavetic · Mario Lucic · Leonidas Guibas · Klaus Greff · Thomas Kipf -
2022 Poster: Revisiting Neural Scaling Laws in Language and Vision »
Ibrahim Alabdulmohsin · Behnam Neyshabur · Xiaohua Zhai -
2022 Poster: Multimodal Contrastive Learning with LIMoE: the Language-Image Mixture of Experts »
Basil Mustafa · Carlos Riquelme · Joan Puigcerver · Rodolphe Jenatton · Neil Houlsby -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 Workshop: ImageNet: Past, Present, and Future »
Zeynep Akata · Lucas Beyer · Sanghyuk Chun · A. Sophia Koepke · Diane Larlus · Seong Joon Oh · Rafael Rezende · Sangdoo Yun · Xiaohua Zhai -
2021 Poster: A Near-Optimal Algorithm for Debiasing Trained Machine Learning Models »
Ibrahim Alabdulmohsin · Mario Lucic -
2021 Poster: Soft Calibration Objectives for Neural Networks »
Archit Karandikar · Nicholas Cain · Dustin Tran · Balaji Lakshminarayanan · Jonathon Shlens · Michael Mozer · Becca Roelofs -
2021 Poster: MLP-Mixer: An all-MLP Architecture for Vision »
Ilya Tolstikhin · Neil Houlsby · Alexander Kolesnikov · Lucas Beyer · Xiaohua Zhai · Thomas Unterthiner · Jessica Yung · Andreas Steiner · Daniel Keysers · Jakob Uszkoreit · Mario Lucic · Alexey Dosovitskiy -
2021 Poster: Scaling Vision with Sparse Mixture of Experts »
Carlos Riquelme · Joan Puigcerver · Basil Mustafa · Maxim Neumann · Rodolphe Jenatton · André Susano Pinto · Daniel Keysers · Neil Houlsby -
2020 Session: Orals & Spotlights Track 08: Deep Learning »
Graham Taylor · Mario Lucic -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2019 Poster: Unsupervised learning of object structure and dynamics from videos »
Matthias Minderer · Chen Sun · Ruben Villegas · Forrester Cole · Kevin Murphy · Honglak Lee -
2019 Poster: Practical and Consistent Estimation of f-Divergences »
Paul Rubenstein · Olivier Bousquet · Josip Djolonga · Carlos Riquelme · Ilya Tolstikhin -
2018 Poster: Provable Variational Inference for Constrained Log-Submodular Models »
Josip Djolonga · Stefanie Jegelka · Andreas Krause -
2018 Poster: Deep Generative Models for Distribution-Preserving Lossy Compression »
Michael Tschannen · Eirikur Agustsson · Mario Lucic -
2018 Poster: Assessing Generative Models via Precision and Recall »
Mehdi S. M. Sajjadi · Olivier Bachem · Mario Lucic · Olivier Bousquet · Sylvain Gelly -
2018 Poster: Are GANs Created Equal? A Large-Scale Study »
Mario Lucic · Karol Kurach · Marcin Michalski · Sylvain Gelly · Olivier Bousquet -
2017 : Poster Session »
Shunsuke Horii · Heejin Jeong · Tobias Schwedes · Qing He · Ben Calderhead · Ertunc Erdil · Jaan Altosaar · Patrick Muchmore · Rajiv Khanna · Ian Gemp · Pengfei Zhang · Yuan Zhou · Chris Cremer · Maria DeYoreo · Alexander Terenin · Brendan McVeigh · Rachit Singh · Yaodong Yang · Erik Bodin · Trefor Evans · Henry Chai · Shandian Zhe · Jeffrey Ling · Vincent ADAM · Lars Maaløe · Andrew Miller · Ari Pakman · Josip Djolonga · Hong Ge -
2017 : Contributed talk: Learning Implicit Generative Models Using Differentiable Graph Tests »
Josip Djolonga -
2017 Poster: Differentiable Learning of Submodular Functions »
Josip Djolonga · Andreas Krause -
2017 Spotlight: Differentiable Learning of Submodular Functions »
Josip Djolonga · Andreas Krause -
2016 Poster: Variational Inference in Mixed Probabilistic Submodular Models »
Josip Djolonga · Sebastian Tschiatschek · Andreas Krause -
2016 Poster: Cooperative Graphical Models »
Josip Djolonga · Stefanie Jegelka · Sebastian Tschiatschek · Andreas Krause -
2015 : Variational Gaussian Process »
Dustin Tran -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2015 Poster: Copula variational inference »
Dustin Tran · David Blei · Edo M Airoldi -
2014 Poster: From MAP to Marginals: Variational Inference in Bayesian Submodular Models »
Josip Djolonga · Andreas Krause -
2013 Poster: High-Dimensional Gaussian Process Bandits »
Josip Djolonga · Andreas Krause · Volkan Cevher