Timezone: »
In collaborative machine learning(CML), multiple agents pool their resources(e.g., data) together for a common learning task. In realistic CML settings where the agents are self-interested and not altruistic, they may be unwilling to share data or model information without adequate rewards. Furthermore, as the data/model information shared by the agents may differ in quality, designing rewards which are fair to them is important so that they would not feel exploited nor discouraged from sharing. In this paper, we adopt federated learning as the CML paradigm, propose a novel cosine gradient Shapley value(CGSV) to fairly evaluate the expected marginal contribution of each agent’s uploaded model parameter update/gradient without needing an auxiliary validation dataset, and based on the CGSV, design a novel training-time gradient reward mechanism with a fairness guarantee by sparsifying the aggregated parameter update/gradient downloaded from the server as reward to each agent such that its resulting quality is commensurate to that of the agent’s uploaded parameter update/gradient. We empirically demonstrate the effectiveness of our fair gradient reward mechanism on multiple benchmark datasets in terms of fairness, predictive performance, and time overhead.
Author Information
Xinyi Xu (National University of Singapore)
Lingjuan Lyu (the University of Melbourne)
Xingjun Ma (Deakin University)
Chenglin Miao (University of Georgia)
Chuan Sheng Foo (Institute for Infocomm Research)
Bryan Kian Hsiang Low (National University of Singapore)
More from the Same Authors
-
2021 Workshop: New Frontiers in Federated Learning: Privacy, Fairness, Robustness, Personalization and Data Ownership »
Nghia Hoang · Lam Nguyen · Pin-Yu Chen · Tsui-Wei Weng · Sara Magliacane · Bryan Kian Hsiang Low · Anoop Deoras -
2021 Poster: $\alpha$-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression »
JIABO HE · Sarah Erfani · Xingjun Ma · James Bailey · Ying Chi · Xian-Sheng Hua -
2021 Poster: Differentially Private Federated Bayesian Optimization with Distributed Exploration »
Zhongxiang Dai · Bryan Kian Hsiang Low · Patrick Jaillet -
2021 Poster: Anti-Backdoor Learning: Training Clean Models on Poisoned Data »
Yige Li · Xixiang Lyu · Nodens Koren · Lingjuan Lyu · Bo Li · Xingjun Ma -
2021 Poster: Fault-Tolerant Federated Reinforcement Learning with Theoretical Guarantee »
Xiaofeng Fan · Yining Ma · Zhongxiang Dai · Wei Jing · Cheston Tan · Bryan Kian Hsiang Low -
2021 Poster: Exploiting Data Sparsity in Secure Cross-Platform Social Recommendation »
Jinming Cui · Chaochao Chen · Lingjuan Lyu · Carl Yang · Wang Li -
2021 Poster: Optimizing Conditional Value-At-Risk of Black-Box Functions »
Quoc Phong Nguyen · Zhongxiang Dai · Bryan Kian Hsiang Low · Patrick Jaillet -
2021 Poster: Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks »
Hanxun Huang · Yisen Wang · Sarah Erfani · Quanquan Gu · James Bailey · Xingjun Ma -
2021 Poster: Validation Free and Replication Robust Volume-based Data Valuation »
Xinyi Xu · Zhaoxuan Wu · Chuan Sheng Foo · Bryan Kian Hsiang Low -
2020 Poster: Variational Bayesian Unlearning »
Quoc Phong Nguyen · Bryan Kian Hsiang Low · Patrick Jaillet -
2020 Poster: Federated Bayesian Optimization via Thompson Sampling »
Zhongxiang Dai · Bryan Kian Hsiang Low · Patrick Jaillet -
2020 Poster: Efficient Exploration of Reward Functions in Inverse Reinforcement Learning via Bayesian Optimization »
Sreejith Balakrishnan · Quoc Phong Nguyen · Bryan Kian Hsiang Low · Harold Soh -
2019 Poster: Implicit Posterior Variational Inference for Deep Gaussian Processes »
Haibin YU · Yizhou Chen · Bryan Kian Hsiang Low · Patrick Jaillet · Zhongxiang Dai -
2019 Spotlight: Implicit Posterior Variational Inference for Deep Gaussian Processes »
Haibin YU · Yizhou Chen · Bryan Kian Hsiang Low · Patrick Jaillet · Zhongxiang Dai -
2017 : Poster Session 2 »
Farhan Shafiq · Antonio Tomas Nevado Vilchez · Takato Yamada · Sakyasingha Dasgupta · Robin Geyer · Moin Nabi · Crefeda Rodrigues · Edoardo Manino · Alexantrou Serb · Miguel A. Carreira-Perpinan · Kar Wai Lim · Bryan Kian Hsiang Low · Rohit Pandey · Marie C White · Pavel Pidlypenskyi · Xue Wang · Achille Brighton · Michael Zhu · Suyog Gupta · Sam Leroux -
2017 : Aligned AI Poster Session »
Amanda Askell · Rafal Muszynski · William Wang · Yaodong Yang · Quoc Nguyen · Bryan Kian Hsiang Low · Patrick Jaillet · Candice Schumann · Anqi Liu · Peter Eckersley · Angelina Wang · William Saunders -
2015 Poster: Inverse Reinforcement Learning with Locally Consistent Reward Functions »
Quoc Phong Nguyen · Bryan Kian Hsiang Low · Patrick Jaillet