`

Timezone: »

 
Poster
Representing Hyperbolic Space Accurately using Multi-Component Floats
Tao Yu · Christopher De Sa

Thu Dec 09 04:30 PM -- 06:00 PM (PST) @ None #None

Hyperbolic space is particularly useful for embedding data with hierarchical structure; however, representing hyperbolic space with ordinary floating-point numbers greatly affects the performance due to its \emph{ineluctable} numerical errors. Simply increasing the precision of floats fails to solve the problem and incurs a high computation cost for simulating greater-than-double-precision floats on hardware such as GPUs, which does not support them. In this paper, we propose a simple, feasible-on-GPUs, and easy-to-understand solution for numerically accurate learning on hyperbolic space. We do this with a new approach to represent hyperbolic space using multi-component floating-point (MCF) in the Poincar{\'e} upper-half space model. Theoretically and experimentally we show our model has small numerical error, and on embedding tasks across various datasets, models represented by multi-component floating-points gain more capacity and run significantly faster on GPUs than prior work.

Author Information

Tao Yu (Cornell University)
Christopher De Sa (Cornell)

More from the Same Authors