Timezone: »
Hyperbolic space is particularly useful for embedding data with hierarchical structure; however, representing hyperbolic space with ordinary floating-point numbers greatly affects the performance due to its \emph{ineluctable} numerical errors. Simply increasing the precision of floats fails to solve the problem and incurs a high computation cost for simulating greater-than-double-precision floats on hardware such as GPUs, which does not support them. In this paper, we propose a simple, feasible-on-GPUs, and easy-to-understand solution for numerically accurate learning on hyperbolic space. We do this with a new approach to represent hyperbolic space using multi-component floating-point (MCF) in the Poincar{\'e} upper-half space model. Theoretically and experimentally we show our model has small numerical error, and on embedding tasks across various datasets, models represented by multi-component floating-points gain more capacity and run significantly faster on GPUs than prior work.
Author Information
Tao Yu (Cornell University)
Christopher De Sa (Cornell)
More from the Same Authors
-
2022 Poster: Understanding Hyperdimensional Computing for Parallel Single-Pass Learning »
Tao Yu · Yichi Zhang · Zhiru Zhang · Christopher De Sa -
2021 Poster: Hyperparameter Optimization Is Deceiving Us, and How to Stop It »
A. Feder Cooper · Yucheng Lu · Jessica Forde · Christopher De Sa -
2021 Poster: Equivariant Manifold Flows »
Isay Katsman · Aaron Lou · Derek Lim · Qingxuan Jiang · Ser Nam Lim · Christopher De Sa -
2020 Workshop: Differential Geometry meets Deep Learning (DiffGeo4DL) »
Joey Bose · Emile Mathieu · Charline Le Lan · Ines Chami · Frederic Sala · Christopher De Sa · Maximilian Nickel · Christopher RĂ© · Will Hamilton -
2020 Poster: Random Reshuffling is Not Always Better »
Christopher De Sa -
2020 Poster: Asymptotically Optimal Exact Minibatch Metropolis-Hastings »
Ruqi Zhang · A. Feder Cooper · Christopher De Sa -
2020 Spotlight: Asymptotically Optimal Exact Minibatch Metropolis-Hastings »
Ruqi Zhang · A. Feder Cooper · Christopher De Sa -
2020 Spotlight: Random Reshuffling is Not Always Better »
Christopher De Sa -
2020 Poster: Neural Manifold Ordinary Differential Equations »
Aaron Lou · Derek Lim · Isay Katsman · Leo Huang · Qingxuan Jiang · Ser Nam Lim · Christopher De Sa -
2019 Poster: Numerically Accurate Hyperbolic Embeddings Using Tiling-Based Models »
Tao Yu · Christopher De Sa -
2019 Spotlight: Numerically Accurate Hyperbolic Embeddings Using Tiling-Based Models »
Tao Yu · Christopher De Sa -
2019 Poster: Dimension-Free Bounds for Low-Precision Training »
Zheng Li · Christopher De Sa -
2019 Poster: Poisson-Minibatching for Gibbs Sampling with Convergence Rate Guarantees »
Ruqi Zhang · Christopher De Sa -
2019 Spotlight: Poisson-Minibatching for Gibbs Sampling with Convergence Rate Guarantees »
Ruqi Zhang · Christopher De Sa -
2019 Poster: Channel Gating Neural Networks »
Weizhe Hua · Yuan Zhou · Christopher De Sa · Zhiru Zhang · G. Edward Suh