`

Timezone: »

 
Poster
Learning Transferable Adversarial Perturbations
Krishna kanth Nakka · Mathieu Salzmann

Wed Dec 08 12:30 AM -- 02:00 AM (PST) @ None #None

While effective, deep neural networks (DNNs) are vulnerable to adversarial attacks. In particular, recent work has shown that such attacks could be generated by another deep network, leading to significant speedups over optimization-based perturbations. However, the ability of such generative methods to generalize to different test-time situations has not been systematically studied. In this paper, we, therefore, investigate the transferability of generated perturbations when the conditions at inference time differ from the training ones in terms of the target architecture, target data, and target task. Specifically, we identify the mid-level features extracted by the intermediate layers of DNNs as common ground across different architectures, datasets, and tasks. This lets us introduce a loss function based on such mid-level features to learn an effective, transferable perturbation generator. Our experiments demonstrate that our approach outperforms the state-of-the-art universal and transferable attack strategies.

Author Information

Krishna kanth Nakka (Swiss Federal Institute of Technology Lausanne)
Mathieu Salzmann (EPFL)

More from the Same Authors