Timezone: »

 
Poster
Combating Noise: Semi-supervised Learning by Region Uncertainty Quantification
Zhenyu Wang · Ya-Li Li · Ye Guo · Shengjin Wang

Wed Dec 08 12:30 AM -- 02:00 AM (PST) @

Semi-supervised learning aims to leverage a large amount of unlabeled data for performance boosting. Existing works primarily focus on image classification. In this paper, we delve into semi-supervised learning for object detection, where labeled data are more labor-intensive to collect. Current methods are easily distracted by noisy regions generated by pseudo labels. To combat the noisy labeling, we propose noise-resistant semi-supervised learning by quantifying the region uncertainty. We first investigate the adverse effects brought by different forms of noise associated with pseudo labels. Then we propose to quantify the uncertainty of regions by identifying the noise-resistant properties of regions over different strengths. By importing the region uncertainty quantification and promoting multi-peak probability distribution output, we introduce uncertainty into training and further achieve noise-resistant learning. Experiments on both PASCAL VOC and MS COCO demonstrate the extraordinary performance of our method.

Author Information

Zhenyu Wang (Tsinghua University, Tsinghua University)
Ya-Li Li (Tsinghua University)
Ye Guo (Tsinghua University, Tsinghua University)
Shengjin Wang (Tsinghua University, Tsinghua University)

More from the Same Authors

  • 2022 Poster: Self-Supervised Learning via Maximum Entropy Coding »
    Xin Liu · Zhongdao Wang · Ya-Li Li · Shengjin Wang
  • 2022 Spotlight: Lightning Talks 1A-3 »
    Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang
  • 2022 Spotlight: Self-Supervised Learning via Maximum Entropy Coding »
    Xin Liu · Zhongdao Wang · Ya-Li Li · Shengjin Wang
  • 2021 Poster: Do Different Tracking Tasks Require Different Appearance Models? »
    Zhongdao Wang · Hengshuang Zhao · Ya-Li Li · Shengjin Wang · Philip Torr · Luca Bertinetto