Timezone: »
Poster
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
Mingguo He · Zhewei Wei · zengfeng Huang · Hongteng Xu
Many representative graph neural networks, $e.g.$, GPR-GNN and ChebNet, approximate graph convolutions with graph spectral filters. However, existing work either applies predefined filter weights or learns them without necessary constraints, which may lead to oversimplified or ill-posed filters. To overcome these issues, we propose $\textit{BernNet}$, a novel graph neural network with theoretical support that provides a simple but effective scheme for designing and learning arbitrary graph spectral filters. In particular, for any filter over the normalized Laplacian spectrum of a graph, our BernNet estimates it by an order-$K$ Bernstein polynomial approximation and designs its spectral property by setting the coefficients of the Bernstein basis. Moreover, we can learn the coefficients (and the corresponding filter weights) based on observed graphs and their associated signals and thus achieve the BernNet specialized for the data. Our experiments demonstrate that BernNet can learn arbitrary spectral filters, including complicated band-rejection and comb filters, and it achieves superior performance in real-world graph modeling tasks. Code is available at https://github.com/ivam-he/BernNet.
Author Information
Mingguo He (Renmin University of China)
Zhewei Wei (Renmin University of China)
zengfeng Huang (Fudan University)
Hongteng Xu (Infinia ML and Duke University)
More from the Same Authors
-
2022 Poster: Lipschitz Bandits with Batched Feedback »
Yasong Feng · zengfeng Huang · Tianyu Wang -
2022 Poster: EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural Networks »
Runlin Lei · Zhen Wang · Yaliang Li · Bolin Ding · Zhewei Wei -
2022 Panel: Panel 4B-1: Convolutional Neural Networks… & Uncovering the Structural… »
Ruijia Wang · Mingguo He -
2022 Spotlight: Lipschitz Bandits with Batched Feedback »
Yasong Feng · zengfeng Huang · Tianyu Wang -
2022 Spotlight: Lightning Talks 2A-1 »
Caio Kalil Lauand · Ryan Strauss · Yasong Feng · lingyu gu · Alireza Fathollah Pour · Oren Mangoubi · Jianhao Ma · Binghui Li · Hassan Ashtiani · Yongqi Du · Salar Fattahi · Sean Meyn · Jikai Jin · Nisheeth Vishnoi · zengfeng Huang · Junier B Oliva · yuan zhang · Han Zhong · Tianyu Wang · John Hopcroft · Di Xie · Shiliang Pu · Liwei Wang · Robert Qiu · Zhenyu Liao -
2022 Spotlight: EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural Networks »
Runlin Lei · Zhen Wang · Yaliang Li · Bolin Ding · Zhewei Wei -
2022 Spotlight: Lightning Talks 1B-1 »
Qitian Wu · Runlin Lei · Rongqin Chen · Luca Pinchetti · Yangze Zhou · Abhinav Kumar · Hans Hao-Hsun Hsu · Wentao Zhao · Chenhao Tan · Zhen Wang · Shenghui Zhang · Yuesong Shen · Tommaso Salvatori · Gitta Kutyniok · Zenan Li · Amit Sharma · Leong Hou U · Yordan Yordanov · Christian Tomani · Bruno Ribeiro · Yaliang Li · David P Wipf · Daniel Cremers · Bolin Ding · Beren Millidge · Ye Li · Yuhang Song · Junchi Yan · Zhewei Wei · Thomas Lukasiewicz -
2022 Poster: Convolutional Neural Networks on Graphs with Chebyshev Approximation, Revisited »
Mingguo He · Zhewei Wei · Ji-Rong Wen -
2022 Poster: Transformers from an Optimization Perspective »
Yongyi Yang · zengfeng Huang · David P Wipf -
2021 Poster: Understanding Bandits with Graph Feedback »
Houshuang Chen · zengfeng Huang · Shuai Li · Chihao Zhang -
2020 Poster: Scalable Graph Neural Networks via Bidirectional Propagation »
Ming Chen · Zhewei Wei · Bolin Ding · Yaliang Li · Ye Yuan · Xiaoyong Du · Ji-Rong Wen -
2019 Poster: Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching »
Hongteng Xu · Dixin Luo · Lawrence Carin -
2019 Poster: Optimal Sparsity-Sensitive Bounds for Distributed Mean Estimation »
zengfeng Huang · Ziyue Huang · Yilei WANG · Ke Yi -
2018 Poster: Distilled Wasserstein Learning for Word Embedding and Topic Modeling »
Hongteng Xu · Wenlin Wang · Wei Liu · Lawrence Carin -
2017 Poster: A Dirichlet Mixture Model of Hawkes Processes for Event Sequence Clustering »
Hongteng Xu · Hongyuan Zha