Timezone: »
We introduce a new general identifiable framework for principled disentanglement referred to as Structured Nonlinear Independent Component Analysis (SNICA). Our contribution is to extend the identifiability theory of deep generative models for a very broad class of structured models. While previous works have shown identifiability for specific classes of time-series models, our theorems extend this to more general temporal structures as well as to models with more complex structures such as spatial dependencies. In particular, we establish the major result that identifiability for this framework holds even in the presence of noise of unknown distribution. Finally, as an example of our framework's flexibility, we introduce the first nonlinear ICA model for time-series that combines the following very useful properties: it accounts for both nonstationarity and autocorrelation in a fully unsupervised setting; performs dimensionality reduction; models hidden states; and enables principled estimation and inference by variational maximum-likelihood.
Author Information
Hermanni Hälvä (University of Helsinki)
Sylvain Le Corff (Telecom SudParis)
Luc Lehéricy (Université Côte d'Azur)
Jonathan So (University of Cambridge)
Yongjie Zhu (University of Helsinki)
Elisabeth Gassiat (Université Paris-Saclay)
Aapo Hyvarinen (University of Helsinki)
More from the Same Authors
-
2023 Poster: Provable benefits of annealing for estimating normalizing constants »
Omar Chehab · Aapo Hyvarinen · Andrej Risteski -
2022 : Panel Discussion »
Cheng Zhang · Mihaela van der Schaar · Ilya Shpitser · Aapo Hyvarinen · Yoshua Bengio · Bernhard Schölkopf -
2021 : Invited talk #1: Aapo Hyvärinen »
Aapo Hyvarinen -
2021 : Aapo Hyvarinen - Causal discovery by generative modelling »
Aapo Hyvarinen -
2021 Poster: Shared Independent Component Analysis for Multi-Subject Neuroimaging »
Hugo Richard · Pierre Ablin · Bertrand Thirion · Alexandre Gramfort · Aapo Hyvarinen -
2021 Poster: NEO: Non Equilibrium Sampling on the Orbits of a Deterministic Transform »
Achille Thin · Yazid Janati El Idrissi · Sylvain Le Corff · Charles Ollion · Eric Moulines · Arnaud Doucet · Alain Durmus · Christian X Robert -
2020 : Keynotes: Aapo Hyvärinen »
Aapo Hyvarinen -
2020 Poster: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Spotlight: Modeling Shared responses in Neuroimaging Studies through MultiView ICA »
Hugo Richard · Luigi Gresele · Aapo Hyvarinen · Bertrand Thirion · Alexandre Gramfort · Pierre Ablin -
2020 Poster: ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA »
Ilyes Khemakhem · Ricardo Monti · Diederik Kingma · Aapo Hyvarinen -
2020 Spotlight: ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA »
Ilyes Khemakhem · Ricardo Monti · Diederik Kingma · Aapo Hyvarinen -
2020 Poster: Relative gradient optimization of the Jacobian term in unsupervised deep learning »
Luigi Gresele · Giancarlo Fissore · Adrián Javaloy · Bernhard Schölkopf · Aapo Hyvarinen -
2016 Poster: Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA »
Aapo Hyvarinen · Hiroshi Morioka -
2016 Oral: Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA »
Aapo Hyvarinen · Hiroshi Morioka -
2011 Poster: Structural equations and divisive normalization for energy-dependent component analysis »
Jun-ichiro Hirayama · Aapo Hyvarinen -
2011 Spotlight: Structural equations and divisive normalization for energy-dependent component analysis »
Jun-ichiro Hirayama · Aapo Hyvarinen