Timezone: »
Poster
Nearly-Tight and Oblivious Algorithms for Explainable Clustering
Buddhima Gamlath · Xinrui Jia · Adam Polak · Ola Svensson
We study the problem of explainable clustering in the setting first formalized by Dasgupta, Frost, Moshkovitz, and Rashtchian (ICML 2020). A $k$-clustering is said to be explainable if it is given by a decision tree where each internal node splits data points with a threshold cut in a single dimension (feature), and each of the $k$ leaves corresponds to a cluster. We give an algorithm that outputs an explainable clustering that loses at most a factor of $O(\log^2 k)$ compared to an optimal (not necessarily explainable) clustering for the $k$-medians objective, and a factor of $O(k \log^2 k)$ for the $k$-means objective. This improves over the previous best upper bounds of $O(k)$ and $O(k^2)$, respectively, and nearly matches the previous $\Omega(\log k)$ lower bound for $k$-medians and our new $\Omega(k)$ lower bound for $k$-means. The algorithm is remarkably simple. In particular, given an initial not necessarily explainable clustering in $\mathbb{R}^d$, it is oblivious to the data points and runs in time $O(dk \log^2 k)$, independent of the number of data points $n$. Our upper and lower bounds also generalize to objectives given by higher $\ell_p$-norms.
Author Information
Buddhima Gamlath (EPFL)
Xinrui Jia (Swiss Federal Institute of Technology Lausanne)
Adam Polak (Swiss Federal Institute of Technology Lausanne)
Ola Svensson (EPFL)
More from the Same Authors
-
2021 Poster: Parallel and Efficient Hierarchical k-Median Clustering »
Vincent Cohen-Addad · Silvio Lattanzi · Ashkan Norouzi-Fard · Christian Sohler · Ola Svensson -
2021 Poster: Learning-Augmented Dynamic Power Management with Multiple States via New Ski Rental Bounds »
Antonios Antoniadis · Christian Coester · Marek Elias · Adam Polak · Bertrand Simon -
2020 Poster: The Primal-Dual method for Learning Augmented Algorithms »
Etienne Bamas · Andreas Maggiori · Ola Svensson -
2020 Oral: The Primal-Dual method for Learning Augmented Algorithms »
Etienne Bamas · Andreas Maggiori · Ola Svensson -
2020 Poster: Learning Augmented Energy Minimization via Speed Scaling »
Etienne Bamas · Andreas Maggiori · Lars Rohwedder · Ola Svensson -
2020 Poster: Fast and Accurate $k$-means++ via Rejection Sampling »
Vincent Cohen-Addad · Silvio Lattanzi · Ashkan Norouzi-Fard · Christian Sohler · Ola Svensson -
2020 Spotlight: Learning Augmented Energy Minimization via Speed Scaling »
Etienne Bamas · Andreas Maggiori · Lars Rohwedder · Ola Svensson -
2016 Poster: Linear Relaxations for Finding Diverse Elements in Metric Spaces »
Aditya Bhaskara · Mehrdad Ghadiri · Vahab Mirrokni · Ola Svensson