Timezone: »

Accumulative Poisoning Attacks on Real-time Data
Tianyu Pang · Xiao Yang · Yinpeng Dong · Hang Su · Jun Zhu

Tue Dec 07 04:30 PM -- 06:00 PM (PST) @

Collecting training data from untrusted sources exposes machine learning services to poisoning adversaries, who maliciously manipulate training data to degrade the model accuracy. When trained on offline datasets, poisoning adversaries have to inject the poisoned data in advance before training, and the order of feeding these poisoned batches into the model is stochastic. In contrast, practical systems are more usually trained/fine-tuned on sequentially captured real-time data, in which case poisoning adversaries could dynamically poison each data batch according to the current model state. In this paper, we focus on the real-time settings and propose a new attacking strategy, which affiliates an accumulative phase with poisoning attacks to secretly (i.e., without affecting accuracy) magnify the destructive effect of a (poisoned) trigger batch. By mimicking online learning and federated learning on MNIST and CIFAR-10, we show that model accuracy significantly drops by a single update step on the trigger batch after the accumulative phase. Our work validates that a well-designed but straightforward attacking strategy can dramatically amplify the poisoning effects, with no need to explore complex techniques.

Author Information

Tianyu Pang (Tsinghua University)
Xiao Yang (Tsinghua University)
Yinpeng Dong (Tsinghua University)
Hang Su (Tsinghua Univiersity)
Jun Zhu (Tsinghua University)

More from the Same Authors