Timezone: »
Neural pruning is a widely-used compression technique for Deep Neural Networks (DNNs). Recent innovations in Hardware Architectures (e.g. Nvidia Ampere Sparse Tensor Core) and N:M fine-grained Sparse Neural Network algorithms (i.e. every M-weights contains N non-zero values) reveal a promising research line of neural pruning. However, the existing N:M algorithms only address the challenge of how to train N:M sparse neural networks in a uniform fashion (i.e. every layer has the same N:M sparsity) and suffer from a significant accuracy drop for high sparsity (i.e. when sparsity > 80\%). To tackle this problem, we present a novel technique -- \textbf{\textit{DominoSearch}} to find mixed N:M sparsity schemes from pre-trained dense deep neural networks to achieve higher accuracy than the uniform-sparsity scheme with equivalent complexity constraints (e.g. model size or FLOPs). For instance, for the same model size with 2.1M parameters (87.5\% sparsity), our layer-wise N:M sparse ResNet18 outperforms its uniform counterpart by 2.1\% top-1 accuracy, on the large-scale ImageNet dataset. For the same computational complexity of 227M FLOPs, our layer-wise sparse ResNet18 outperforms the uniform one by 1.3\% top-1 accuracy. Furthermore, our layer-wise fine-grained N:M sparse ResNet50 achieves 76.7\% top-1 accuracy with 5.0M parameters. {This is competitive to the results achieved by layer-wise unstructured sparsity} that is believed to be the upper-bound of Neural Network pruning with respect to the accuracy-sparsity trade-off. We believe that our work can build a strong baseline for further sparse DNN research and encourage future hardware-algorithm co-design work. Our code and models are publicly available at \url{https://github.com/NM-sparsity/DominoSearch}.
Author Information
Wei Sun (Eindhoven University of Technology)
Aojun Zhou (intel; CASIA)
Sander Stuijk (Eindhoven University of Technology)
Rob Wijnhoven (ViNotion)
Andrew Nelson (Eindhoven University of Technology)
Hongsheng Li (cuhk)
Henk Corporaal (Eindhoven University of Technology)
More from the Same Authors
-
2022 Spotlight: Lightning Talks 4B-3 »
Zicheng Zhang · Mancheng Meng · Antoine Guedon · Yue Wu · Wei Mao · Zaiyu Huang · Peihao Chen · Shizhe Chen · yongwei chen · Keqiang Sun · Yi Zhu · chen rui · Hanhui Li · Dongyu Ji · Ziyan Wu · miaomiao Liu · Pascal Monasse · Yu Deng · Shangzhe Wu · Pierre-Louis Guhur · Jiaolong Yang · Kunyang Lin · Makarand Tapaswi · Zhaoyang Huang · Terrence Chen · Jiabao Lei · Jianzhuang Liu · Vincent Lepetit · Zhenyu Xie · Richard I Hartley · Dinggang Shen · Xiaodan Liang · Runhao Zeng · Cordelia Schmid · Michael Kampffmeyer · Mathieu Salzmann · Ning Zhang · Fangyun Wei · Yabin Zhang · Fan Yang · Qifeng Chen · Wei Ke · Quan Wang · Thomas Li · qingling Cai · Kui Jia · Ivan Laptev · Mingkui Tan · Xin Tong · Hongsheng Li · Xiaodan Liang · Chuang Gan -
2022 Spotlight: ST-Adapter: Parameter-Efficient Image-to-Video Transfer Learning »
Junting Pan · Ziyi Lin · Xiatian Zhu · Jing Shao · Hongsheng Li -
2022 Spotlight: Controllable 3D Face Synthesis with Conditional Generative Occupancy Fields »
Keqiang Sun · Shangzhe Wu · Zhaoyang Huang · Ning Zhang · Quan Wang · Hongsheng Li -
2022 Spotlight: Uni-Perceiver-MoE: Learning Sparse Generalist Models with Conditional MoEs »
Jinguo Zhu · Xizhou Zhu · Wenhai Wang · Xiaohua Wang · Hongsheng Li · Xiaogang Wang · Jifeng Dai -
2022 Spotlight: MCMAE: Masked Convolution Meets Masked Autoencoders »
Peng Gao · Teli Ma · Hongsheng Li · Ziyi Lin · Jifeng Dai · Yu Qiao -
2022 Spotlight: Lightning Talks 2B-1 »
Yehui Tang · Jian Wang · Zheng Chen · man zhou · Peng Gao · Chenyang Si · SHANGKUN SUN · Yixing Xu · Weihao Yu · Xinghao Chen · Kai Han · Hu Yu · Yulun Zhang · Chenhui Gou · Teli Ma · Yuanqi Chen · Yunhe Wang · Hongsheng Li · Jinjin Gu · Jianyuan Guo · Qiman Wu · Pan Zhou · Yu Zhu · Jie Huang · Chang Xu · Yichen Zhou · Haocheng Feng · Guodong Guo · yongbing zhang · Ziyi Lin · Feng Zhao · Ge Li · Junyu Han · Jinwei Gu · Jifeng Dai · Chao Xu · Xinchao Wang · Linghe Kong · Shuicheng Yan · Yu Qiao · Chen Change Loy · Xin Yuan · Errui Ding · Yunhe Wang · Deyu Meng · Jingdong Wang · Chongyi Li -
2022 Poster: Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud Pre-training »
Renrui Zhang · Ziyu Guo · Peng Gao · Rongyao Fang · Bin Zhao · Dong Wang · Yu Qiao · Hongsheng Li -
2022 Poster: Uni-Perceiver-MoE: Learning Sparse Generalist Models with Conditional MoEs »
Jinguo Zhu · Xizhou Zhu · Wenhai Wang · Xiaohua Wang · Hongsheng Li · Xiaogang Wang · Jifeng Dai -
2022 Poster: MCMAE: Masked Convolution Meets Masked Autoencoders »
Peng Gao · Teli Ma · Hongsheng Li · Ziyi Lin · Jifeng Dai · Yu Qiao -
2022 Poster: ST-Adapter: Parameter-Efficient Image-to-Video Transfer Learning »
Junting Pan · Ziyi Lin · Xiatian Zhu · Jing Shao · Hongsheng Li -
2022 Poster: Controllable 3D Face Synthesis with Conditional Generative Occupancy Fields »
Keqiang Sun · Shangzhe Wu · Zhaoyang Huang · Ning Zhang · Quan Wang · Hongsheng Li -
2021 Poster: Container: Context Aggregation Networks »
peng gao · Jiasen Lu · Hongsheng Li · Roozbeh Mottaghi · Aniruddha Kembhavi -
2020 Poster: Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID »
Yixiao Ge · Feng Zhu · Dapeng Chen · Rui Zhao · Hongsheng Li -
2020 Poster: Balanced Meta-Softmax for Long-Tailed Visual Recognition »
Jiawei Ren · Cunjun Yu · shunan sheng · Xiao Ma · Haiyu Zhao · Shuai Yi · Hongsheng Li -
2019 Poster: Learning to Predict Layout-to-image Conditional Convolutions for Semantic Image Synthesis »
Xihui Liu · Guojun Yin · Jing Shao · Xiaogang Wang · Hongsheng Li -
2018 Poster: FD-GAN: Pose-guided Feature Distilling GAN for Robust Person Re-identification »
Yixiao Ge · Zhuowan Li · Haiyu Zhao · Guojun Yin · Shuai Yi · Xiaogang Wang · Hongsheng Li -
2016 Poster: CRF-CNN: Modeling Structured Information in Human Pose Estimation »
Xiao Chu · Wanli Ouyang · Hongsheng Li · Xiaogang Wang