Timezone: »
Poster
NEO: Non Equilibrium Sampling on the Orbits of a Deterministic Transform
Achille Thin · Yazid Janati El Idrissi · Sylvain Le Corff · Charles Ollion · Eric Moulines · Arnaud Doucet · Alain Durmus · Christian X Robert
Sampling from a complex distribution $\pi$ and approximating its intractable normalizing constant $\mathrm{Z}$ are challenging problems. In this paper, a novel family of importance samplers (IS) and Markov chain Monte Carlo (MCMC) samplers is derived. Given an invertible map $\mathrm{T}$, these schemes combine (with weights) elements from the forward and backward Orbits through points sampled from a proposal distribution $\rho$. The map $\mathrm{T}$ does not leave the target $\pi$ invariant, hence the name NEO, standing for Non-Equilibrium Orbits. NEO-IS provides unbiased estimators of the normalizing constant and self-normalized IS estimators of expectations under $\pi$ while NEO-MCMC combines multiple NEO-IS estimates of the normalizing constant and an iterated sampling-importance resampling mechanism to sample from $\pi$. For $\mathrm{T}$ chosen as a discrete-time integrator of a conformal Hamiltonian system, NEO-IS achieves state-of-the art performance on difficult benchmarks and NEO-MCMC is able to explore highly multimodal targets. Additionally, we provide detailed theoretical results for both methods. In particular, we show that NEO-MCMC is uniformly geometrically ergodic and establish explicit mixing time estimates under mild conditions.
Author Information
Achille Thin (Ecole polytechnique)
Yazid Janati El Idrissi (telecom sudparis)
Sylvain Le Corff (Telecom SudParis)
Charles Ollion (Ecole polytechnique)
Eric Moulines (Ecole Polytechnique)
Arnaud Doucet (Google DeepMind)
Alain Durmus (ENS Paris Saclay)
Christian X Robert (Université Paris-Dauphine)
More from the Same Authors
-
2021 Spotlight: Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling »
Valentin De Bortoli · James Thornton · Jeremy Heng · Arnaud Doucet -
2022 : Distributional deep Q-learning with CVaR regression »
Mastane Achab · REDA ALAMI · YASSER ABDELAZIZ DAHOU DJILALI · Kirill Fedyanin · Eric Moulines · Maxim Panov -
2023 Poster: First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities »
Aleksandr Beznosikov · Sergey Samsonov · Marina Sheshukova · Alexander Gasnikov · Alexey Naumov · Eric Moulines -
2023 Poster: Model-free Posterior Sampling via Learning Rate Randomization »
Daniil Tiapkin · Denis Belomestny · Daniele Calandriello · Eric Moulines · Remi Munos · Alexey Naumov · Pierre Perrault · Michal Valko · Pierre Ménard -
2022 Spotlight: Optimistic Posterior Sampling for Reinforcement Learning with Few Samples and Tight Guarantees »
Daniil Tiapkin · Denis Belomestny · Daniele Calandriello · Eric Moulines · Remi Munos · Alexey Naumov · Mark Rowland · Michal Valko · Pierre Ménard -
2022 Poster: Optimistic Posterior Sampling for Reinforcement Learning with Few Samples and Tight Guarantees »
Daniil Tiapkin · Denis Belomestny · Daniele Calandriello · Eric Moulines · Remi Munos · Alexey Naumov · Mark Rowland · Michal Valko · Pierre Ménard -
2022 Poster: Local-Global MCMC kernels: the best of both worlds »
Sergey Samsonov · Evgeny Lagutin · Marylou Gabrié · Alain Durmus · Alexey Naumov · Eric Moulines -
2022 Poster: BR-SNIS: Bias Reduced Self-Normalized Importance Sampling »
Gabriel Cardoso · Sergey Samsonov · Achille Thin · Eric Moulines · Jimmy Olsson -
2022 Poster: FedPop: A Bayesian Approach for Personalised Federated Learning »
Nikita Kotelevskii · Maxime Vono · Alain Durmus · Eric Moulines -
2021 Poster: Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling »
Valentin De Bortoli · James Thornton · Jeremy Heng · Arnaud Doucet -
2021 Poster: Federated-EM with heterogeneity mitigation and variance reduction »
Aymeric Dieuleveut · Gersende Fort · Eric Moulines · Geneviève Robin -
2021 Poster: Disentangling Identifiable Features from Noisy Data with Structured Nonlinear ICA »
Hermanni Hälvä · Sylvain Le Corff · Luc Lehéricy · Jonathan So · Yongjie Zhu · Elisabeth Gassiat · Aapo Hyvarinen -
2021 Poster: Online Variational Filtering and Parameter Learning »
Andrew Campbell · Yuyang Shi · Thomas Rainforth · Arnaud Doucet -
2021 Poster: Fast Approximation of the Sliced-Wasserstein Distance Using Concentration of Random Projections »
Kimia Nadjahi · Alain Durmus · Pierre E Jacob · Roland Badeau · Umut Simsekli -
2021 Poster: Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize »
Alain Durmus · Eric Moulines · Alexey Naumov · Sergey Samsonov · Kevin Scaman · Hoi-To Wai -
2021 Oral: Online Variational Filtering and Parameter Learning »
Andrew Campbell · Yuyang Shi · Thomas Rainforth · Arnaud Doucet -
2020 Poster: A Stochastic Path Integral Differential EstimatoR Expectation Maximization Algorithm »
Gersende Fort · Eric Moulines · Hoi-To Wai -
2020 Poster: Modular Meta-Learning with Shrinkage »
Yutian Chen · Abram Friesen · Feryal Behbahani · Arnaud Doucet · David Budden · Matthew Hoffman · Nando de Freitas -
2020 Spotlight: Modular Meta-Learning with Shrinkage »
Yutian Chen · Abram Friesen · Feryal Behbahani · Arnaud Doucet · David Budden · Matthew Hoffman · Nando de Freitas -
2019 Spotlight: Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance »
Kimia Nadjahi · Alain Durmus · Umut Simsekli · Roland Badeau -
2019 Poster: On the Global Convergence of (Fast) Incremental Expectation Maximization Methods »
Belhal Karimi · Hoi-To Wai · Eric Moulines · Marc Lavielle -
2018 Poster: Low-rank Interaction with Sparse Additive Effects Model for Large Data Frames »
Geneviève Robin · Hoi-To Wai · Julie Josse · Olga Klopp · Eric Moulines -
2018 Spotlight: Low-rank Interaction with Sparse Additive Effects Model for Large Data Frames »
Geneviève Robin · Hoi-To Wai · Julie Josse · Olga Klopp · Eric Moulines -
2018 Poster: The promises and pitfalls of Stochastic Gradient Langevin Dynamics »
Nicolas Brosse · Alain Durmus · Eric Moulines -
2015 : *Christian Robert* Can We Estimate a Constant? »
Christian X Robert -
2014 Workshop: ABC in Montreal »
Max Welling · Neil D Lawrence · Richard D Wilkinson · Ted Meeds · Christian X Robert