Timezone: »
In this work we seek to bridge the concepts of topographic organization and equivariance in neural networks. To accomplish this, we introduce the Topographic VAE: a novel method for efficiently training deep generative models with topographically organized latent variables. We show that such a model indeed learns to organize its activations according to salient characteristics such as digit class, width, and style on MNIST. Furthermore, through topographic organization over time (i.e. temporal coherence), we demonstrate how predefined latent space transformation operators can be encouraged for observed transformed input sequences -- a primitive form of unsupervised learned equivariance. We demonstrate that this model successfully learns sets of approximately equivariant features (i.e. "capsules") directly from sequences and achieves higher likelihood on correspondingly transforming test sequences. Equivariance is verified quantitatively by measuring the approximate commutativity of the inference network and the sequence transformations. Finally, we demonstrate approximate equivariance to complex transformations, expanding upon the capabilities of existing group equivariant neural networks.
Author Information
T. Anderson Keller (University of Amsterdam)
Max Welling (University of Amsterdam / Qualcomm AI Research)
More from the Same Authors
-
2021 : Particle Dynamics for Learning EBMs »
Kirill Neklyudov · Priyank Jaini · Max Welling -
2022 : Program Synthesis for Integer Sequence Generation »
Natasha Butt · Auke Wiggers · Taco Cohen · Max Welling -
2023 Poster: Flow Factorized Representation Learning »
Yue Song · T. Anderson Keller · Nicu Sebe · Max Welling -
2022 : Invited Talk #4, The Fifth Paradigm of Scientific Discovery, Max Welling »
Max Welling -
2021 : Particle Dynamics for Learning EBMs »
Kirill Neklyudov · Priyank Jaini · Max Welling -
2021 : General Discussion 1 - What is out of distribution (OOD) generalization and why is it important? with Yoshua Bengio, Leyla Isik, Max Welling »
Yoshua Bengio · Leyla Isik · Max Welling · Joshua T Vogelstein · Weiwei Yang -
2021 : Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders »
T. Anderson Keller · Qinghe Gao · Max Welling -
2021 : Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders »
T. Anderson Keller · Qinghe Gao · Max Welling -
2021 Workshop: AI for Science: Mind the Gaps »
Payal Chandak · Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Gabriel Spadon · Max Tegmark · Hanchen Wang · Adrian Weller · Max Welling · Marinka Zitnik -
2021 Poster: Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions »
Emiel Hoogeboom · Didrik Nielsen · Priyank Jaini · Patrick Forré · Max Welling -
2021 Poster: Learning Equivariant Energy Based Models with Equivariant Stein Variational Gradient Descent »
Priyank Jaini · Lars Holdijk · Max Welling -
2021 Poster: E(n) Equivariant Normalizing Flows »
Victor Garcia Satorras · Emiel Hoogeboom · Fabian Fuchs · Ingmar Posner · Max Welling -
2021 Poster: Modality-Agnostic Topology Aware Localization »
Farhad Ghazvinian Zanjani · Ilia Karmanov · Hanno Ackermann · Daniel Dijkman · Simone Merlin · Max Welling · Fatih Porikli -
2021 Oral: E(n) Equivariant Normalizing Flows »
Victor Garcia Satorras · Emiel Hoogeboom · Fabian Fuchs · Ingmar Posner · Max Welling -
2019 : Keynote - ML »
Max Welling -
2017 Poster: Causal Effect Inference with Deep Latent-Variable Models »
Christos Louizos · Uri Shalit · Joris Mooij · David Sontag · Richard Zemel · Max Welling -
2017 Poster: Bayesian Compression for Deep Learning »
Christos Louizos · Karen Ullrich · Max Welling -
2016 Workshop: Bayesian Deep Learning »
Yarin Gal · Christos Louizos · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2015 Poster: Bayesian dark knowledge »
Anoop Korattikara Balan · Vivek Rathod · Kevin Murphy · Max Welling