Timezone: »
Self-Supervised Learning (SSL) has been shown to learn useful and information-preserving representations. Neural Networks (NNs) are widely applied, yet their weight space is still not fully understood. Therefore, we propose to use SSL to learn hyper-representations of the weights of populations of NNs. To that end, we introduce domain specific data augmentations and an adapted attention architecture. Our empirical evaluation demonstrates that self-supervised representation learning in this domain is able to recover diverse NN model characteristics. Further, we show that the proposed learned representations outperform prior work for predicting hyper-parameters, test accuracy, and generalization gap as well as transfer to out-of-distribution settings.
Author Information
Konstantin Schürholt (University of St. Gallen)
Dimche Kostadinov (University of Geneva)
Damian Borth (University of St.Gallen (HSG))
More from the Same Authors
-
2022 : Federated Continual Learning to Detect Accounting Anomalies in Financial Auditing »
Marco Schreyer · Hamed Hemati · Damian Borth · Miklos Vasarhelyi -
2022 : Towards dynamical stability analysis of sustainable power grids using Graph Neural Networks »
Christian Nauck · Michael Lindner · Ulrich Schürholt · Frank Hellmann -
2022 Spotlight: Lightning Talks 2A-3 »
David Buterez · Chengan He · Xuan Kan · Yutong Lin · Konstantin Schürholt · Yu Yang · Louis Annabi · Wei Dai · Xiaotian Cheng · Alexandre Pitti · Ze Liu · Jon Paul Janet · Jun Saito · Boris Knyazev · Mathias Quoy · Zheng Zhang · James Zachary · Steven J Kiddle · Xavier Giro-i-Nieto · Chang Liu · Hejie Cui · Zilong Zhang · Hakan Bilen · Damian Borth · Dino Oglic · Holly Rushmeier · Han Hu · Xiangyang Ji · Yi Zhou · Nanning Zheng · Ying Guo · Pietro Liò · Stephen Lin · Carl Yang · Yue Cao -
2022 Spotlight: Hyper-Representations as Generative Models: Sampling Unseen Neural Network Weights »
Konstantin Schürholt · Boris Knyazev · Xavier Giro-i-Nieto · Damian Borth -
2022 Poster: Hyper-Representations as Generative Models: Sampling Unseen Neural Network Weights »
Konstantin Schürholt · Boris Knyazev · Xavier Giro-i-Nieto · Damian Borth -
2022 Poster: Model Zoos: A Dataset of Diverse Populations of Neural Network Models »
Konstantin Schürholt · Diyar Taskiran · Boris Knyazev · Xavier Giro-i-Nieto · Damian Borth