Timezone: »
We present an end-to-end differentiable training method for retrieval-augmented open-domain question answering systems that combine information from multiple retrieved documents when generating answers. We model retrieval decisions as latent variables over sets of relevant documents. Since marginalizing over sets of retrieved documents is computationally hard, we approximate this using an expectation-maximization algorithm. We iteratively estimate the value of our latent variable (the set of relevant documents for a given question) and then use this estimate to update the retriever and reader parameters. We hypothesize that such end-to-end training allows training signals to flow to the reader and then to the retriever better than staged-wise training. This results in a retriever that is able to select more relevant documents for a question and a reader that is trained on more accurate documents to generate an answer. Experiments on three benchmark datasets demonstrate that our proposed method outperforms all existing approaches of comparable size by 2-3% absolute exact match points, achieving new state-of-the-art results. Our results also demonstrate the feasibility of learning to retrieve to improve answer generation without explicit supervision of retrieval decisions.
Author Information
Devendra Singh (Mila / McGill University)
Siva Reddy (McGill University)
Will Hamilton (McGill University / FAIR)
Chris Dyer (DeepMind)
Dani Yogatama (Google DeepMind)
More from the Same Authors
-
2021 : LiRo: Benchmark and leaderboard for Romanian language tasks »
Stefan Dumitrescu · Petru Rebeja · Beata Lorincz · Mihaela Gaman · Andrei Avram · Mihai Ilie · Andrei Pruteanu · Adriana Stan · Lorena Rosia · Cristina Iacobescu · Luciana Morogan · George Dima · Gabriel Marchidan · Traian Rebedea · Madalina Chitez · Dani Yogatama · Sebastian Ruder · Radu Tudor Ionescu · Razvan Pascanu · Viorica Patraucean -
2021 Spotlight: Mind the Gap: Assessing Temporal Generalization in Neural Language Models »
Angeliki Lazaridou · Adhi Kuncoro · Elena Gribovskaya · Devang Agrawal · Adam Liska · Tayfun Terzi · Mai Gimenez · Cyprien de Masson d'Autume · Tomas Kocisky · Sebastian Ruder · Dani Yogatama · Kris Cao · Susannah Barlow · Phil Blunsom -
2021 : Visually Grounded Reasoning across Languages and Cultures »
Fangyu Liu · Emanuele Bugliarello · Edoardo Ponti · Siva Reddy · Desmond Elliott -
2021 : Rethinking Graph Transformers with Spectral Attention »
Devin Kreuzer · Will Hamilton · Vincent Létourneau -
2023 Poster: Are Diffusion Models Vision-And-Language Reasoners? »
Benno Krojer · Elinor Poole-Dayan · Vikram Voleti · Chris Pal · Siva Reddy -
2023 Poster: The Impact of Positional Encoding on Length Generalization in Transformers »
Amirhossein Kazemnejad · Inkit Padhi · Karthikeyan Natesan Ramamurthy · Payel Das · Siva Reddy -
2022 Spotlight: A Contrastive Framework for Neural Text Generation »
Yixuan Su · Tian Lan · Yan Wang · Dani Yogatama · Lingpeng Kong · Nigel Collier -
2022 : Do we still need inductive biases after Transformer language models? »
Siva Reddy -
2022 Poster: A Contrastive Framework for Neural Text Generation »
Yixuan Su · Tian Lan · Yan Wang · Dani Yogatama · Lingpeng Kong · Nigel Collier -
2021 Poster: Rethinking Graph Transformers with Spectral Attention »
Devin Kreuzer · Dominique Beaini · Will Hamilton · Vincent Létourneau · Prudencio Tossou -
2021 Poster: Mind the Gap: Assessing Temporal Generalization in Neural Language Models »
Angeliki Lazaridou · Adhi Kuncoro · Elena Gribovskaya · Devang Agrawal · Adam Liska · Tayfun Terzi · Mai Gimenez · Cyprien de Masson d'Autume · Tomas Kocisky · Sebastian Ruder · Dani Yogatama · Kris Cao · Susannah Barlow · Phil Blunsom -
2018 : Panel »
Paroma Varma · Aditya Grover · Will Hamilton · Jessica Hamrick · Thomas Kipf · Marinka Zitnik -
2018 Poster: Hierarchical Graph Representation Learning with Differentiable Pooling »
Zhitao Ying · Jiaxuan You · Christopher Morris · Xiang Ren · Will Hamilton · Jure Leskovec -
2018 Spotlight: Hierarchical Graph Representation Learning with Differentiable Pooling »
Zhitao Ying · Jiaxuan You · Christopher Morris · Xiang Ren · Will Hamilton · Jure Leskovec -
2018 Poster: Embedding Logical Queries on Knowledge Graphs »
Will Hamilton · Payal Bajaj · Marinka Zitnik · Dan Jurafsky · Jure Leskovec -
2017 Poster: On-the-fly Operation Batching in Dynamic Computation Graphs »
Graham Neubig · Yoav Goldberg · Chris Dyer -
2014 Workshop: Modern Machine Learning and Natural Language Processing »
Ankur P Parikh · Avneesh Saluja · Chris Dyer · Eric Xing -
2014 Poster: Conditional Random Field Autoencoders for Unsupervised Structured Prediction »
Waleed Ammar · Chris Dyer · Noah A Smith -
2014 Oral: Conditional Random Field Autoencoders for Unsupervised Structured Prediction »
Waleed Ammar · Chris Dyer · Noah A Smith