Timezone: »
BinaryConnect (BC) and its many variations have become the de facto standard for neural network quantization. However, our understanding of the inner workings of BC is still quite limited. We attempt to close this gap in four different aspects: (a) we show that existing quantization algorithms, including post-training quantization, are surprisingly similar to each other; (b) we argue for proximal maps as a natural family of quantizers that is both easy to design and analyze; (c) we refine the observation that BC is a special case of dual averaging, which itself is a special case of the generalized conditional gradient algorithm; (d) consequently, we propose ProxConnect (PC) as a generalization of BC and we prove its convergence properties by exploiting the established connections. We conduct experiments on CIFAR-10 and ImageNet, and verify that PC achieves competitive performance.
Author Information
Tim Dockhorn (University of Waterloo)
Yaoliang Yu (Carnegie Mellon University)
Eyyüb Sari (Huawei Noah's Ark Lab)
Mahdi Zolnouri (Huawei)
Vahid Partovi Nia (Huawei Noah's Ark Lab)
More from the Same Authors
-
2021 : Compressing Pre-trained Language Models using Progressive Low Rank Decomposition »
Habib Hajimolahoseini · Mehdi Rezaghoizadeh · Vahid Partovi Nia · Marzieh Tahaei · Omar Mohamed Awad · Yang Liu -
2021 : Kronecker Decomposition for GPT Compression »
Ali Edalati · Marzieh Tahaei · Ahmad Rashid · Vahid Partovi Nia · James J. Clark · Mehdi Rezaghoizadeh -
2022 : Latent Space Diffusion Models of Cryo-EM Structures »
Karsten Kreis · Tim Dockhorn · Zihao Li · Ellen Zhong -
2022 : Strategies for Applying Low Rank Decomposition to Transformer-Based Models »
Habib Hajimolahoseini · Walid Ahmed · Mehdi Rezaghoizadeh · Vahid Partovi Nia · Yang Liu -
2022 : Latent Space Diffusion Models of Cryo-EM Structures »
Karsten Kreis · Tim Dockhorn · Zihao Li · Ellen Zhong -
2022 Poster: Is Integer Arithmetic Enough for Deep Learning Training? »
Alireza Ghaffari · Marzieh S. Tahaei · Mohammadreza Tayaranian · Masoud Asgharian · Vahid Partovi Nia -
2022 Poster: GENIE: Higher-Order Denoising Diffusion Solvers »
Tim Dockhorn · Arash Vahdat · Karsten Kreis -
2021 Poster: Are My Deep Learning Systems Fair? An Empirical Study of Fixed-Seed Training »
Shangshu Qian · Viet Hung Pham · Thibaud Lutellier · Zeou Hu · Jungwon Kim · Lin Tan · Yaoliang Yu · Jiahao Chen · Sameena Shah -
2021 Poster: Quantifying and Improving Transferability in Domain Generalization »
Guojun Zhang · Han Zhao · Yaoliang Yu · Pascal Poupart -
2021 Poster: S$^3$: Sign-Sparse-Shift Reparametrization for Effective Training of Low-bit Shift Networks »
Xinlin Li · Bang Liu · Yaoliang Yu · Wulong Liu · Chunjing XU · Vahid Partovi Nia -
2016 Poster: Convex Two-Layer Modeling with Latent Structure »
Vignesh Ganapathiraman · Xinhua Zhang · Yaoliang Yu · Junfeng Wen -
2014 Poster: Efficient Structured Matrix Rank Minimization »
Adams Wei Yu · Wanli Ma · Yaoliang Yu · Jaime Carbonell · Suvrit Sra