Timezone: »
Meaningful and simplified representations of neural activity can yield insights into how and what information is being processed within a neural circuit. However, without labels, finding representations that reveal the link between the brain and behavior can be challenging. Here, we introduce a novel unsupervised approach for learning disentangled representations of neural activity called Swap-VAE. Our approach combines a generative modeling framework with an instance-specific alignment loss that tries to maximize the representational similarity between transformed views of the input (brain state). These transformed (or augmented) views are created by dropping out neurons and jittering samples in time, which intuitively should lead the network to a representation that maintains both temporal consistency and invariance to the specific neurons used to represent the neural state. Through evaluations on both synthetic data and neural recordings from hundreds of neurons in different primate brains, we show that it is possible to build representations that disentangle neural datasets along relevant latent dimensions linked to behavior.
Author Information
Ran Liu (Georgia Institute of Technology)
I am a 4th year Ph.D. student in the Machine Learning Program at Georgia Tech. I conduct my research in the Neural Data Science Lab advised by Prof. Eva Dyer. My research interests lie at the intersection of Machine (Deep) Learning, Computational Neuroscience, and Computer Vision.
Mehdi Azabou (Georgia Institute of Technology)
Max Dabagia (Georgia Institute of Technology)
Chi-Heng Lin (gatech)
Mohammad Gheshlaghi Azar (DeepMind)
Keith Hengen (Washington University, St. Louis)
Michal Valko (DeepMind Paris / Inria / ENS Paris-Saclay)
Michal is a machine learning scientist in DeepMind Paris, tenured researcher at Inria, and the lecturer of the master course Graphs in Machine Learning at l'ENS Paris-Saclay. Michal is primarily interested in designing algorithms that would require as little human supervision as possible. This means 1) reducing the “intelligence” that humans need to input into the system and 2) minimizing the data that humans need to spend inspecting, classifying, or “tuning” the algorithms. That is why he is working on methods and settings that are able to deal with minimal feedback, such as deep reinforcement learning, bandit algorithms, or self-supervised learning. Michal is actively working on represenation learning and building worlds models. He is also working on deep (reinforcement) learning algorithm that have some theoretical underpinning. He has also worked on sequential algorithms with structured decisions where exploiting the structure leads to provably faster learning. He received his Ph.D. in 2011 from the University of Pittsburgh under the supervision of Miloš Hauskrecht and after was a postdoc of Rémi Munos before taking a permanent position at Inria in 2012.
Eva Dyer (Georgia Institute of Technology)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity »
Fri. Dec 10th 04:30 -- 06:00 PM Room
More from the Same Authors
-
2021 Spotlight: Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret »
Jean Tarbouriech · Runlong Zhou · Simon Du · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Spotlight: A Provably Efficient Sample Collection Strategy for Reinforcement Learning »
Jean Tarbouriech · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 : Neural Latents Benchmark ‘21: Evaluating latent variable models of neural population activity »
Felix Pei · Joel Ye · David Zoltowski · Anqi Wu · Raeed Chowdhury · Hansem Sohn · Joseph O'Doherty · Krishna V Shenoy · Matthew Kaufman · Mark Churchland · Mehrdad Jazayeri · Lee Miller · Jonathan Pillow · Il Memming Park · Eva Dyer · Chethan Pandarinath -
2022 : BLaDE: Robust Exploration via Diffusion Models »
Bilal Piot · Zhaohan Guo · Shantanu Thakoor · Mohammad Gheshlaghi Azar -
2023 Poster: A Unified, Scalable Framework for Neural Population Decoding »
Mehdi Azabou · Vinam Arora · Venkataramana Ganesh · Ximeng Mao · Santosh Nachimuthu · Michael Mendelson · Blake Richards · Matthew Perich · Guillaume Lajoie · Eva Dyer -
2023 Poster: Relax, it doesn’t matter how you get there: A new self-supervised approach for multi-timescale behavior analysis »
Mehdi Azabou · Michael Mendelson · Nauman Ahad · Maks Sorokin · Shantanu Thakoor · Carolina Urzay · Eva Dyer -
2022 Poster: BYOL-Explore: Exploration by Bootstrapped Prediction »
Zhaohan Guo · Shantanu Thakoor · Miruna Pislar · Bernardo Avila Pires · Florent Altché · Corentin Tallec · Alaa Saade · Daniele Calandriello · Jean-Bastien Grill · Yunhao Tang · Michal Valko · Remi Munos · Mohammad Gheshlaghi Azar · Bilal Piot -
2022 Poster: Seeing the forest and the tree: Building representations of both individual and collective dynamics with transformers »
Ran Liu · Mehdi Azabou · Max Dabagia · Jingyun Xiao · Eva Dyer -
2022 Poster: MTNeuro: A Benchmark for Evaluating Representations of Brain Structure Across Multiple Levels of Abstraction »
Jorge Quesada · Lakshmi Sathidevi · Ran Liu · Nauman Ahad · Joy Jackson · Mehdi Azabou · Jingyun Xiao · Christopher Liding · Matthew Jin · Carolina Urzay · William Gray-Roncal · Erik Johnson · Eva Dyer -
2021 : Contributed talk 3 »
Mehdi Azabou -
2021 Poster: Learning in two-player zero-sum partially observable Markov games with perfect recall »
Tadashi Kozuno · Pierre Ménard · Remi Munos · Michal Valko -
2021 Poster: Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret »
Jean Tarbouriech · Runlong Zhou · Simon Du · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Poster: A Provably Efficient Sample Collection Strategy for Reinforcement Learning »
Jean Tarbouriech · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Poster: Unifying Gradient Estimators for Meta-Reinforcement Learning via Off-Policy Evaluation »
Yunhao Tang · Tadashi Kozuno · Mark Rowland · Remi Munos · Michal Valko -
2020 Poster: Bootstrap Your Own Latent - A New Approach to Self-Supervised Learning »
Jean-Bastien Grill · Florian Strub · Florent Altché · Corentin Tallec · Pierre Richemond · Elena Buchatskaya · Carl Doersch · Bernardo Avila Pires · Daniel (Zhaohan) Guo · Mohammad Gheshlaghi Azar · Bilal Piot · koray kavukcuoglu · Remi Munos · Michal Valko -
2020 Oral: Bootstrap Your Own Latent - A New Approach to Self-Supervised Learning »
Jean-Bastien Grill · Florian Strub · Florent Altché · Corentin Tallec · Pierre Richemond · Elena Buchatskaya · Carl Doersch · Bernardo Avila Pires · Daniel (Zhaohan) Guo · Mohammad Gheshlaghi Azar · Bilal Piot · koray kavukcuoglu · Remi Munos · Michal Valko -
2020 Poster: Improved Sample Complexity for Incremental Autonomous Exploration in MDPs »
Jean Tarbouriech · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2020 Oral: Improved Sample Complexity for Incremental Autonomous Exploration in MDPs »
Jean Tarbouriech · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2019 Poster: Exact sampling of determinantal point processes with sublinear time preprocessing »
Michal Derezinski · Daniele Calandriello · Michal Valko -
2019 Poster: Planning in entropy-regularized Markov decision processes and games »
Jean-Bastien Grill · Omar Darwiche Domingues · Pierre Menard · Remi Munos · Michal Valko -
2019 Poster: Hierarchical Optimal Transport for Multimodal Distribution Alignment »
John Lee · Max Dabagia · Eva Dyer · Christopher Rozell -
2019 Poster: On two ways to use determinantal point processes for Monte Carlo integration »
Guillaume Gautier · Rémi Bardenet · Michal Valko -
2019 Poster: Multiagent Evaluation under Incomplete Information »
Mark Rowland · Shayegan Omidshafiei · Karl Tuyls · Julien Perolat · Michal Valko · Georgios Piliouras · Remi Munos -
2019 Spotlight: Multiagent Evaluation under Incomplete Information »
Mark Rowland · Shayegan Omidshafiei · Karl Tuyls · Julien Perolat · Michal Valko · Georgios Piliouras · Remi Munos -
2019 Poster: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2019 Spotlight: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2018 Poster: Optimistic optimization of a Brownian »
Jean-Bastien Grill · Michal Valko · Remi Munos -
2017 : Closing Panel: Analyzing brain data from nano to macroscale »
William Gray Roncal · Eva Dyer -
2017 : Opening Remarks »
Eva Dyer · William Gray Roncal -
2017 Workshop: BigNeuro 2017: Analyzing brain data from nano to macroscale »
Eva Dyer · Gregory Kiar · William Gray Roncal · · Konrad P Koerding · Joshua T Vogelstein -
2017 Poster: Online Influence Maximization under Independent Cascade Model with Semi-Bandit Feedback »
Zheng Wen · Branislav Kveton · Michal Valko · Sharan Vaswani -
2017 Poster: Efficient Second-Order Online Kernel Learning with Adaptive Embedding »
Daniele Calandriello · Alessandro Lazaric · Michal Valko -
2016 : Eva Dyer »
Eva Dyer -
2016 Workshop: Brains and Bits: Neuroscience meets Machine Learning »
Alyson Fletcher · Eva Dyer · Jascha Sohl-Dickstein · Joshua T Vogelstein · Konrad Koerding · Jakob H Macke -
2016 Poster: Blazing the trails before beating the path: Sample-efficient Monte-Carlo planning »
Jean-Bastien Grill · Michal Valko · Remi Munos -
2016 Oral: Blazing the trails before beating the path: Sample-efficient Monte-Carlo planning »
Jean-Bastien Grill · Michal Valko · Remi Munos -
2015 Workshop: BigNeuro 2015: Making sense of big neural data »
Eva Dyer · Joshua T Vogelstein · Konrad Koerding · Jeremy Freeman · Andreas S. Tolias -
2015 Poster: Black-box optimization of noisy functions with unknown smoothness »
Jean-Bastien Grill · Michal Valko · Remi Munos · Remi Munos -
2014 Poster: Efficient learning by implicit exploration in bandit problems with side observations »
Tomáš Kocák · Gergely Neu · Michal Valko · Remi Munos -
2014 Poster: Extreme bandits »
Alexandra Carpentier · Michal Valko -
2014 Poster: Online combinatorial optimization with stochastic decision sets and adversarial losses »
Gergely Neu · Michal Valko