Timezone: »
A recurring theme in statistical learning, online learning, and beyond is that faster convergence rates are possible for problems with low noise, often quantified by the performance of the best hypothesis; such results are known as first-order or small-loss guarantees. While first-order guarantees are relatively well understood in statistical and online learning, adapting to low noise in contextual bandits (and more broadly, decision making) presents major algorithmic challenges. In a COLT 2017 open problem, Agarwal, Krishnamurthy, Langford, Luo, and Schapire asked whether first-order guarantees are even possible for contextual bandits and---if so---whether they can be attained by efficient algorithms. We give a resolution to this question by providing an optimal and efficient reduction from contextual bandits to online regression with the logarithmic (or, cross-entropy) loss. Our algorithm is simple and practical, readily accommodates rich function classes, and requires no distributional assumptions beyond realizability. In a large-scale empirical evaluation, we find that our approach typically outperforms comparable non-first-order methods.On the technical side, we show that the logarithmic loss and an information-theoretic quantity called the triangular discrimination play a fundamental role in obtaining first-order guarantees, and we combine this observation with new refinements to the regression oracle reduction framework of Foster and Rakhlin (2020). The use of triangular discrimination yields novel results even for the classical statistical learning model, and we anticipate that it will find broader use.
Author Information
Dylan Foster (Microsoft Research)
Akshay Krishnamurthy (Microsoft)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Oral: Efficient First-Order Contextual Bandits: Prediction, Allocation, and Triangular Discrimination »
Wed. Dec 8th 04:00 -- 04:15 PM Room
More from the Same Authors
-
2021 Spotlight: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2021 : Offline Reinforcement Learning: Fundamental Barriers for Value Function Approximation »
Dylan Foster · Akshay Krishnamurthy · David Simchi-Levi · Yunzong Xu -
2022 : Hybrid RL: Using both offline and online data can make RL efficient »
Yuda Song · Yifei Zhou · Ayush Sekhari · J. Bagnell · Akshay Krishnamurthy · Wen Sun -
2023 Poster: Exposing Attention Glitches with Flip-Flop Language Modeling »
Bingbin Liu · Jordan Ash · Surbhi Goel · Akshay Krishnamurthy · Cyril Zhang -
2023 Poster: Efficient Model-Free Exploration in Low-Rank MDPs »
Zak Mhammedi · Adam Block · Dylan J Foster · Alexander Rakhlin -
2023 Poster: Model-Free Reinforcement Learning with the Decision-Estimation Coefficient »
Dylan J Foster · Noah Golowich · Jian Qian · Alexander Rakhlin · Ayush Sekhari -
2022 Poster: Interaction-Grounded Learning with Action-Inclusive Feedback »
Tengyang Xie · Akanksha Saran · Dylan J Foster · Lekan Molu · Ida Momennejad · Nan Jiang · Paul Mineiro · John Langford -
2022 Poster: On the Statistical Efficiency of Reward-Free Exploration in Non-Linear RL »
Jinglin Chen · Aditya Modi · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal -
2022 Poster: Understanding the Eluder Dimension »
Gene Li · Pritish Kamath · Dylan J Foster · Nati Srebro -
2022 Poster: On the Complexity of Adversarial Decision Making »
Dylan J Foster · Alexander Rakhlin · Ayush Sekhari · Karthik Sridharan -
2021 : Contributed Talk 3: Offline Reinforcement Learning: Fundamental Barriers for Value Function Approximation »
Yunzong Xu · Akshay Krishnamurthy · David Simchi-Levi -
2021 Poster: Gone Fishing: Neural Active Learning with Fisher Embeddings »
Jordan Ash · Surbhi Goel · Akshay Krishnamurthy · Sham Kakade -
2021 Poster: Bayesian decision-making under misspecified priors with applications to meta-learning »
Max Simchowitz · Christopher Tosh · Akshay Krishnamurthy · Daniel Hsu · Thodoris Lykouris · Miro Dudik · Robert Schapire -
2020 Poster: Provably adaptive reinforcement learning in metric spaces »
Tongyi Cao · Akshay Krishnamurthy -
2020 Poster: Adapting to Misspecification in Contextual Bandits »
Dylan Foster · Claudio Gentile · Mehryar Mohri · Julian Zimmert -
2020 Poster: Efficient Contextual Bandits with Continuous Actions »
Maryam Majzoubi · Chicheng Zhang · Rajan Chari · Akshay Krishnamurthy · John Langford · Aleksandrs Slivkins -
2020 Poster: FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs »
Alekh Agarwal · Sham Kakade · Akshay Krishnamurthy · Wen Sun -
2020 Poster: Learning the Linear Quadratic Regulator from Nonlinear Observations »
Zakaria Mhammedi · Dylan Foster · Max Simchowitz · Dipendra Misra · Wen Sun · Akshay Krishnamurthy · Alexander Rakhlin · John Langford -
2020 Poster: Sample-Efficient Reinforcement Learning of Undercomplete POMDPs »
Chi Jin · Sham Kakade · Akshay Krishnamurthy · Qinghua Liu -
2020 Spotlight: Sample-Efficient Reinforcement Learning of Undercomplete POMDPs »
Chi Jin · Sham Kakade · Akshay Krishnamurthy · Qinghua Liu -
2020 Oral: FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs »
Alekh Agarwal · Sham Kakade · Akshay Krishnamurthy · Wen Sun -
2020 Session: Orals & Spotlights Track 11: Learning Theory »
Dylan Foster · Nicolò Cesa-Bianchi -
2020 Poster: Independent Policy Gradient Methods for Competitive Reinforcement Learning »
Constantinos Daskalakis · Dylan Foster · Noah Golowich -
2020 Poster: Information Theoretic Regret Bounds for Online Nonlinear Control »
Sham Kakade · Akshay Krishnamurthy · Kendall Lowrey · Motoya Ohnishi · Wen Sun -
2020 : Real World RL with Vowpal Wabbit: Beyond Contextual Bandits »
John Langford · Marek Wydmuch · Maryam Majzoubi · Adith Swaminathan · · Dylan Foster · Paul Mineiro -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2019 Poster: Sample Complexity of Learning Mixture of Sparse Linear Regressions »
Akshay Krishnamurthy · Arya Mazumdar · Andrew McGregor · Soumyabrata Pal -
2019 Poster: Model Selection for Contextual Bandits »
Dylan Foster · Akshay Krishnamurthy · Haipeng Luo -
2019 Spotlight: Model Selection for Contextual Bandits »
Dylan Foster · Akshay Krishnamurthy · Haipeng Luo -
2019 Poster: Hypothesis Set Stability and Generalization »
Dylan Foster · Spencer Greenberg · Satyen Kale · Haipeng Luo · Mehryar Mohri · Karthik Sridharan -
2018 Poster: Contextual bandits with surrogate losses: Margin bounds and efficient algorithms »
Dylan Foster · Akshay Krishnamurthy -
2018 Poster: On Oracle-Efficient PAC RL with Rich Observations »
Christoph Dann · Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2018 Poster: Uniform Convergence of Gradients for Non-Convex Learning and Optimization »
Dylan Foster · Ayush Sekhari · Karthik Sridharan -
2018 Spotlight: On Oracle-Efficient PAC RL with Rich Observations »
Christoph Dann · Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2017 Poster: Off-policy evaluation for slate recommendation »
Adith Swaminathan · Akshay Krishnamurthy · Alekh Agarwal · Miro Dudik · John Langford · Damien Jose · Imed Zitouni -
2017 Poster: Spectrally-normalized margin bounds for neural networks »
Peter Bartlett · Dylan J Foster · Matus Telgarsky -
2017 Oral: Off-policy evaluation for slate recommendation »
Adith Swaminathan · Akshay Krishnamurthy · Alekh Agarwal · Miro Dudik · John Langford · Damien Jose · Imed Zitouni -
2017 Spotlight: Spectrally-normalized margin bounds for neural networks »
Peter Bartlett · Dylan J Foster · Matus Telgarsky -
2017 Poster: Parameter-Free Online Learning via Model Selection »
Dylan J Foster · Satyen Kale · Mehryar Mohri · Karthik Sridharan -
2017 Spotlight: Parameter-Free Online Learning via Model Selection »
Dylan J Foster · Satyen Kale · Mehryar Mohri · Karthik Sridharan -
2016 Poster: Learning in Games: Robustness of Fast Convergence »
Dylan Foster · zhiyuan li · Thodoris Lykouris · Karthik Sridharan · Eva Tardos -
2015 : Discussion Panel »
Tim van Erven · Wouter Koolen · Peter Grünwald · Shai Ben-David · Dylan Foster · Satyen Kale · Gergely Neu -
2015 : Adaptive Online Learning »
Dylan Foster -
2015 Poster: Adaptive Online Learning »
Dylan Foster · Alexander Rakhlin · Karthik Sridharan -
2015 Spotlight: Adaptive Online Learning »
Dylan Foster · Alexander Rakhlin · Karthik Sridharan