Timezone: »
Poster
Local Differential Privacy for Regret Minimization in Reinforcement Learning
Evrard Garcelon · Vianney Perchet · Ciara Pike-Burke · Matteo Pirotta
Reinforcement learning algorithms are widely used in domains where it is desirable to provide a personalized service. In these domains it is common that user data contains sensitive information that needs to be protected from third parties. Motivated by this, we study privacy in the context of finite-horizon Markov Decision Processes (MDPs) by requiring information to be obfuscated on the user side. We formulate this notion of privacy for RL by leveraging the local differential privacy (LDP) framework. We establish a lower bound for regret minimization in finite-horizon MDPs with LDP guarantees which shows that guaranteeing privacy has a multiplicative effect on the regret. This result shows that while LDP is an appealing notion of privacy, it makes the learning problem significantly more complex. Finally, we present an optimistic algorithm that simultaneously satisfies $\varepsilon$-LDP requirements, and achieves $\sqrt{K}/\varepsilon$ regret in any finite-horizon MDP after $K$ episodes, matching the lower bound dependency on the number of episodes $K$.
Author Information
Evrard Garcelon (Meta AI)
Vianney Perchet (ENSAE & Criteo AI Lab)
Ciara Pike-Burke (Imperial College London)
Matteo Pirotta (Facebook AI Research)
More from the Same Authors
-
2020 : Local Differentially Private Regret Minimization in Reinforcement Learning »
Evrard Garcelon -
2021 Spotlight: Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret »
Jean Tarbouriech · Runlong Zhou · Simon Du · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Spotlight: Online Sign Identification: Minimization of the Number of Errors in Thresholding Bandits »
Reda Ouhamma · Odalric-Ambrym Maillard · Vianney Perchet -
2021 Spotlight: A Provably Efficient Sample Collection Strategy for Reinforcement Learning »
Jean Tarbouriech · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Spotlight: Decentralized Learning in Online Queuing Systems »
Flore Sentenac · Etienne Boursier · Vianney Perchet -
2022 Poster: Scalable Representation Learning in Linear Contextual Bandits with Constant Regret Guarantees »
Andrea Tirinzoni · Matteo Papini · Ahmed Touati · Alessandro Lazaric · Matteo Pirotta -
2021 Poster: Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret »
Jean Tarbouriech · Runlong Zhou · Simon Du · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Poster: A Provably Efficient Sample Collection Strategy for Reinforcement Learning »
Jean Tarbouriech · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 Poster: ROI Maximization in Stochastic Online Decision-Making »
Nicolò Cesa-Bianchi · Tom Cesari · Yishay Mansour · Vianney Perchet -
2021 Poster: Making the most of your day: online learning for optimal allocation of time »
Etienne Boursier · Tristan Garrec · Vianney Perchet · Marco Scarsini -
2021 Poster: Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection »
Matteo Papini · Andrea Tirinzoni · Aldo Pacchiano · Marcello Restelli · Alessandro Lazaric · Matteo Pirotta -
2021 Poster: Stochastic Online Linear Regression: the Forward Algorithm to Replace Ridge »
Reda Ouhamma · Odalric-Ambrym Maillard · Vianney Perchet -
2021 Poster: Online Sign Identification: Minimization of the Number of Errors in Thresholding Bandits »
Reda Ouhamma · Odalric-Ambrym Maillard · Vianney Perchet -
2021 Poster: Online Matching in Sparse Random Graphs: Non-Asymptotic Performances of Greedy Algorithm »
Nathan Noiry · Vianney Perchet · Flore Sentenac -
2021 Poster: Decentralized Learning in Online Queuing Systems »
Flore Sentenac · Etienne Boursier · Vianney Perchet -
2020 Poster: An Asymptotically Optimal Primal-Dual Incremental Algorithm for Contextual Linear Bandits »
Andrea Tirinzoni · Matteo Pirotta · Marcello Restelli · Alessandro Lazaric -
2020 Poster: Adversarial Attacks on Linear Contextual Bandits »
Evrard Garcelon · Baptiste Roziere · Laurent Meunier · Jean Tarbouriech · Olivier Teytaud · Alessandro Lazaric · Matteo Pirotta -
2020 Poster: Improved Sample Complexity for Incremental Autonomous Exploration in MDPs »
Jean Tarbouriech · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2020 Poster: A Unifying View of Optimism in Episodic Reinforcement Learning »
Gergely Neu · Ciara Pike-Burke -
2020 Oral: Improved Sample Complexity for Incremental Autonomous Exploration in MDPs »
Jean Tarbouriech · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2019 : Poster Session »
Ahana Ghosh · Javad Shafiee · Akhilan Boopathy · Alex Tamkin · Theodoros Vasiloudis · Vedant Nanda · Ali Baheri · Paul Fieguth · Andrew Bennett · Guanya Shi · Hao Liu · Arushi Jain · Jacob Tyo · Benjie Wang · Boxiao Chen · Carroll Wainwright · Chandramouli Shama Sastry · Chao Tang · Daniel S. Brown · David Inouye · David Venuto · Dhruv Ramani · Dimitrios Diochnos · Divyam Madaan · Dmitrii Krashenikov · Joel Oren · Doyup Lee · Eleanor Quint · elmira amirloo · Matteo Pirotta · Gavin Hartnett · Geoffroy Dubourg-Felonneau · Gokul Swamy · Pin-Yu Chen · Ilija Bogunovic · Jason Carter · Javier Garcia-Barcos · Jeet Mohapatra · Jesse Zhang · Jian Qian · John Martin · Oliver Richter · Federico Zaiter · Tsui-Wei Weng · Karthik Abinav Sankararaman · Kyriakos Polymenakos · Lan Hoang · mahdieh abbasi · Marco Gallieri · Mathieu Seurin · Matteo Papini · Matteo Turchetta · Matthew Sotoudeh · Mehrdad Hosseinzadeh · Nathan Fulton · Masatoshi Uehara · Niranjani Prasad · Oana-Maria Camburu · Patrik Kolaric · Philipp Renz · Prateek Jaiswal · Reazul Hasan Russel · Riashat Islam · Rishabh Agarwal · Alexander Aldrick · Sachin Vernekar · Sahin Lale · Sai Kiran Narayanaswami · Samuel Daulton · Sanjam Garg · Sebastian East · Shun Zhang · Soheil Dsidbari · Justin Goodwin · Victoria Krakovna · Wenhao Luo · Wesley Chung · Yuanyuan Shi · Yuh-Shyang Wang · Hongwei Jin · Ziping Xu -
2019 Poster: Recovering Bandits »
Ciara Pike-Burke · Steffen Grünewälder -
2019 Spotlight: Recovering Bandits »
Ciara Pike-Burke · Steffen Grünewälder -
2019 Poster: Exploration Bonus for Regret Minimization in Discrete and Continuous Average Reward MDPs »
Jian QIAN · Ronan Fruit · Matteo Pirotta · Alessandro Lazaric -
2019 Poster: Regret Bounds for Learning State Representations in Reinforcement Learning »
Ronald Ortner · Matteo Pirotta · Alessandro Lazaric · Ronan Fruit · Odalric-Ambrym Maillard -
2018 Poster: Near Optimal Exploration-Exploitation in Non-Communicating Markov Decision Processes »
Ronan Fruit · Matteo Pirotta · Alessandro Lazaric -
2018 Spotlight: Near Optimal Exploration-Exploitation in Non-Communicating Markov Decision Processes »
Ronan Fruit · Matteo Pirotta · Alessandro Lazaric -
2017 Poster: Compatible Reward Inverse Reinforcement Learning »
Alberto Maria Metelli · Matteo Pirotta · Marcello Restelli -
2017 Poster: Regret Minimization in MDPs with Options without Prior Knowledge »
Ronan Fruit · Matteo Pirotta · Alessandro Lazaric · Emma Brunskill -
2017 Poster: Adaptive Batch Size for Safe Policy Gradients »
Matteo Papini · Matteo Pirotta · Marcello Restelli -
2017 Spotlight: Regret Minimization in MDPs with Options without Prior Knowledge »
Ronan Fruit · Matteo Pirotta · Alessandro Lazaric · Emma Brunskill -
2017 Poster: Fast Rates for Bandit Optimization with Upper-Confidence Frank-Wolfe »
Quentin Berthet · Vianney Perchet -
2017 Spotlight: Fast Rates for Bandit Optimization with Upper-Confidence Frank-Wolfe »
Quentin Berthet · Vianney Perchet -
2013 Poster: Adaptive Step-Size for Policy Gradient Methods »
Matteo Pirotta · Marcello Restelli · Luca Bascetta