Timezone: »
Models such as convolutional neural networks restrict the hypothesis space to a set of functions satisfying equivariance constraints, and improve generalization in problems by capturing relevant symmetries. However, symmetries are often only partially respected, preventing models with restriction biases from fitting the data. We introduce Residual Pathway Priors (RPPs) as a method for converting hard architectural constraints into soft priors, guiding models towards structured solutions while retaining the ability to capture additional complexity. RPPs are resilient to approximate or misspecified symmetries, and are as effective as fully constrained models even when symmetries are exact. We show that RPPs provide compelling performance on both model-free and model-based reinforcement learning problems, where contact forces and directional rewards violate the assumptions of equivariant networks. Finally, we demonstrate that RPPs have broad applicability, including dynamical systems, regression, and classification.
Author Information
Marc Finzi (NYU)
Gregory Benton (New York University)
Andrew Wilson (New York University)

I am a professor of machine learning at New York University.
More from the Same Authors
-
2021 : Robust Reinforcement Learning for Shifting Dynamics During Deployment »
Samuel Stanton · Rasool Fakoor · Jonas Mueller · Andrew Gordon Wilson · Alexander Smola -
2022 : Transfer Learning with Deep Tabular Models »
Roman Levin · Valeriia Cherepanova · Avi Schwarzschild · Arpit Bansal · C. Bayan Bruss · Tom Goldstein · Andrew Wilson · Micah Goldblum -
2022 : On Representation Learning Under Class Imbalance »
Ravid Shwartz-Ziv · Micah Goldblum · Yucen Li · C. Bayan Bruss · Andrew Gordon Wilson -
2023 Poster: Understanding the detrimental class-level effects of data augmentation »
Polina Kirichenko · Mark Ibrahim · Randall Balestriero · Diane Bouchacourt · Shanmukha Ramakrishna Vedantam · Hamed Firooz · Andrew Wilson -
2023 Poster: Large Language Models Are Zero Shot Time Series Forecasters »
Marc Finzi · Nate Gruver · Shikai Qiu · Andrew Wilson -
2023 Poster: Simplifying Neural Network Training Under Class Imbalance »
Ravid Shwartz-Ziv · Micah Goldblum · Yucen Li · C. Bayan Bruss · Andrew Wilson -
2023 Poster: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra »
Andres Potapczynski · Marc Finzi · Geoff Pleiss · Andrew Wilson -
2023 Poster: Protein Design with Guided Discrete Diffusion »
Nate Gruver · Samuel Stanton · Nathan Frey · Tim G. J. Rudner · Isidro Hotzel · Julien Lafrance-Vanasse · Arvind Rajpal · Kyunghyun Cho · Andrew Wilson -
2023 Poster: Visual Explanations of Image-Text Representations via Multi-Modal Information Bottleneck Attribution »
Tim G. J. Rudner · Ying Wang · Andrew Wilson -
2023 Poster: Should We Learn Most Likely Functions or Parameters? »
Tim G. J. Rudner · Sanyam Kapoor · Shikai Qiu · Andrew Wilson -
2023 Poster: A Performance-Driven Benchmark for Feature Selection in Tabular Deep Learning »
Valeriia Cherepanova · Gowthami Somepalli · Jonas Geiping · C. Bayan Bruss · Andrew Wilson · Tom Goldstein · Micah Goldblum -
2023 Poster: Battle of the Backbones: A Large-Scale Comparison of Pretrained Models across Computer Vision Tasks »
Micah Goldblum · Hossein Souri · Renkun Ni · Manli Shu · Viraj Prabhu · Gowthami Somepalli · Prithvijit Chattopadhyay · Adrien Bardes · Mark Ibrahim · Judy Hoffman · Rama Chellappa · Andrew Wilson · Tom Goldstein -
2022 : Andrew Gordon Wilson: When Bayesian Orthodoxy Can Go Wrong: Model Selection and Out-of-Distribution Generalization »
Andrew Gordon Wilson -
2022 : Andrew Gordon Wilson: When Bayesian Orthodoxy Can Go Wrong: Model Selection and Out-of-Distribution Generalization »
Andrew Gordon Wilson -
2022 : Transfer Learning with Deep Tabular Models »
Roman Levin · Valeriia Cherepanova · Avi Schwarzschild · Arpit Bansal · C. Bayan Bruss · Tom Goldstein · Andrew Wilson · Micah Goldblum -
2022 Poster: Chroma-VAE: Mitigating Shortcut Learning with Generative Classifiers »
Wanqian Yang · Polina Kirichenko · Micah Goldblum · Andrew Wilson -
2022 Poster: On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification »
Sanyam Kapoor · Wesley Maddox · Pavel Izmailov · Andrew Wilson -
2022 Poster: Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors »
Ravid Shwartz-Ziv · Micah Goldblum · Hossein Souri · Sanyam Kapoor · Chen Zhu · Yann LeCun · Andrew Wilson -
2022 Poster: On Feature Learning in the Presence of Spurious Correlations »
Pavel Izmailov · Polina Kirichenko · Nate Gruver · Andrew Wilson -
2022 Poster: PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization »
Sanae Lotfi · Marc Finzi · Sanyam Kapoor · Andres Potapczynski · Micah Goldblum · Andrew Wilson -
2021 Workshop: Bayesian Deep Learning »
Yarin Gal · Yingzhen Li · Sebastian Farquhar · Christos Louizos · Eric Nalisnick · Andrew Gordon Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2021 : Evaluating Approximate Inference in Bayesian Deep Learning + Q&A »
Andrew Gordon Wilson · Pavel Izmailov · Matthew Hoffman · Yarin Gal · Yingzhen Li · Melanie F. Pradier · Sharad Vikram · Andrew Foong · Sanae Lotfi · Sebastian Farquhar -
2021 Poster: Does Knowledge Distillation Really Work? »
Samuel Stanton · Pavel Izmailov · Polina Kirichenko · Alexander Alemi · Andrew Wilson -
2021 Poster: Dangers of Bayesian Model Averaging under Covariate Shift »
Pavel Izmailov · Patrick Nicholson · Sanae Lotfi · Andrew Wilson -
2021 Poster: Conditioning Sparse Variational Gaussian Processes for Online Decision-making »
Wesley Maddox · Samuel Stanton · Andrew Wilson -
2021 Poster: Bayesian Optimization with High-Dimensional Outputs »
Wesley Maddox · Maximilian Balandat · Andrew Wilson · Eytan Bakshy -
2020 Poster: Bayesian Deep Learning and a Probabilistic Perspective of Generalization »
Andrew Wilson · Pavel Izmailov -
2020 Poster: Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit Constraints »
Marc Finzi · Ke Alexander Wang · Andrew Wilson -
2020 Spotlight: Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit Constraints »
Marc Finzi · Ke Alexander Wang · Andrew Wilson -
2020 Poster: BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization »
Maximilian Balandat · Brian Karrer · Daniel Jiang · Samuel Daulton · Ben Letham · Andrew Wilson · Eytan Bakshy -
2020 Poster: Learning Invariances in Neural Networks from Training Data »
Gregory Benton · Marc Finzi · Pavel Izmailov · Andrew Wilson -
2020 Poster: Improving GAN Training with Probability Ratio Clipping and Sample Reweighting »
Yue Wu · Pan Zhou · Andrew Wilson · Eric Xing · Zhiting Hu -
2020 Poster: Why Normalizing Flows Fail to Detect Out-of-Distribution Data »
Polina Kirichenko · Pavel Izmailov · Andrew Wilson -
2019 Workshop: Learning with Rich Experience: Integration of Learning Paradigms »
Zhiting Hu · Andrew Wilson · Chelsea Finn · Lisa Lee · Taylor Berg-Kirkpatrick · Ruslan Salakhutdinov · Eric Xing -
2019 Poster: Exact Gaussian Processes on a Million Data Points »
Ke Alexander Wang · Geoff Pleiss · Jacob Gardner · Stephen Tyree · Kilian Weinberger · Andrew Gordon Wilson -
2019 Poster: Function-Space Distributions over Kernels »
Gregory Benton · Wesley Maddox · Jayson Salkey · Julio Albinati · Andrew Gordon Wilson -
2019 Poster: A Simple Baseline for Bayesian Uncertainty in Deep Learning »
Wesley Maddox · Pavel Izmailov · Timur Garipov · Dmitry Vetrov · Andrew Gordon Wilson -
2018 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2018 Poster: Scaling Gaussian Process Regression with Derivatives »
David Eriksson · Kun Dong · Eric Lee · David Bindel · Andrew Wilson -
2018 Poster: GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration »
Jacob Gardner · Geoff Pleiss · Kilian Weinberger · David Bindel · Andrew Wilson -
2018 Spotlight: GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration »
Jacob Gardner · Geoff Pleiss · Kilian Weinberger · David Bindel · Andrew Wilson -
2018 Poster: Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs »
Timur Garipov · Pavel Izmailov · Dmitrii Podoprikhin · Dmitry Vetrov · Andrew Wilson -
2018 Spotlight: Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs »
Timur Garipov · Pavel Izmailov · Dmitrii Podoprikhin · Dmitry Vetrov · Andrew Wilson -
2017 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Andrew Wilson · Diederik Kingma · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2017 Symposium: Interpretable Machine Learning »
Andrew Wilson · Jason Yosinski · Patrice Simard · Rich Caruana · William Herlands -
2017 Poster: Bayesian GAN »
Yunus Saatci · Andrew Wilson -
2017 Spotlight: Bayesian GANs »
Yunus Saatci · Andrew Wilson -
2017 Poster: Bayesian Optimization with Gradients »
Jian Wu · Matthias Poloczek · Andrew Wilson · Peter Frazier -
2017 Poster: Scalable Log Determinants for Gaussian Process Kernel Learning »
Kun Dong · David Eriksson · Hannes Nickisch · David Bindel · Andrew Wilson -
2017 Oral: Bayesian Optimization with Gradients »
Jian Wu · Matthias Poloczek · Andrew Wilson · Peter Frazier -
2017 Poster: Scalable Levy Process Priors for Spectral Kernel Learning »
Phillip Jang · Andrew Loeb · Matthew Davidow · Andrew Wilson -
2016 Workshop: Interpretable Machine Learning for Complex Systems »
Andrew Wilson · Been Kim · William Herlands -
2016 Poster: Stochastic Variational Deep Kernel Learning »
Andrew Wilson · Zhiting Hu · Russ Salakhutdinov · Eric Xing -
2015 Workshop: Nonparametric Methods for Large Scale Representation Learning »
Andrew G Wilson · Alexander Smola · Eric Xing -
2015 Poster: The Human Kernel »
Andrew Wilson · Christoph Dann · Chris Lucas · Eric Xing -
2015 Spotlight: The Human Kernel »
Andrew Wilson · Christoph Dann · Chris Lucas · Eric Xing -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2014 Poster: Fast Kernel Learning for Multidimensional Pattern Extrapolation »
Andrew Wilson · Elad Gilboa · John P Cunningham · Arye Nehorai -
2010 Spotlight: Copula Processes »
Andrew Wilson · Zoubin Ghahramani -
2010 Poster: Copula Processes »
Andrew Wilson · Zoubin Ghahramani