Timezone: »
Graph neural networks that leverage coordinates via directional message passing have recently set the state of the art on multiple molecular property prediction tasks. However, they rely on atom position information that is often unavailable, and obtaining it is usually prohibitively expensive or even impossible. In this paper we propose synthetic coordinates that enable the use of advanced GNNs without requiring the true molecular configuration. We propose two distances as synthetic coordinates: Distance bounds that specify the rough range of molecular configurations, and graph-based distances using a symmetric variant of personalized PageRank. To leverage both distance and angular information we propose a method of transforming normal graph neural networks into directional MPNNs. We show that with this transformation we can reduce the error of a normal graph neural network by 55% on the ZINC benchmark. We furthermore set the state of the art on ZINC and coordinate-free QM9 by incorporating synthetic coordinates in the SMP and DimeNet++ models. Our implementation is available online.
Author Information
Johannes Gasteiger (Technical University of Munich)
Chandan Yeshwanth (Technical University of Munich)
Stephan Günnemann (Technical University of Munich)
More from the Same Authors
-
2021 : Whole Brain Vessel Graphs: A Dataset and Benchmark for Graph Learning and Neuroscience »
Johannes C. Paetzold · Julian McGinnis · Suprosanna Shit · Ivan Ezhov · Paul Büschl · Chinmay Prabhakar · Anjany Sekuboyina · Mihail Todorov · Georgios Kaissis · Ali Ertürk · Stephan Günnemann · Bjoern Menze -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Dominique Beaini · Gabriele Corso · Prudencio Tossou · Christian Dallago · Stephan Günnemann · Pietro Lió -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Gabriele Corso · Christian Dallago · Stephan Günnemann · Pietro Lió -
2022 : torchode: A Parallel ODE Solver for PyTorch »
Marten Lienen · Stephan Günnemann -
2022 : Modeling Temporal Data as Continuous Functions with Process Diffusion »
Marin Biloš · Kashif Rasul · Anderson Schneider · Yuriy Nevmyvaka · Stephan Günnemann -
2022 : Training Differentially Private Graph Neural Networks with Random Walk Sampling »
Morgane Ayle · Jan Schuchardt · Lukas Gosch · Daniel Zügner · Stephan Günnemann -
2022 : Revisiting Robustness in Graph Machine Learning »
Lukas Gosch · Daniel Sturm · Simon Geisler · Stephan Günnemann -
2022 : Revisiting Robustness in Graph Machine Learning »
Lukas Gosch · Daniel Sturm · Simon Geisler · Stephan Günnemann -
2023 : Transition Path Sampling with Boltzmann Generator-based MCMC Moves »
Michael Plainer · Hannes Stärk · Charlotte Bunne · Stephan Günnemann -
2023 : Transition Path Sampling with Boltzmann Generator-based MCMC Moves »
Michael Plainer · Hannes Stärk · Charlotte Bunne · Stephan Günnemann -
2023 : Latent Space Simulator for Unveiling Molecular Free Energy Landscapes and Predicting Transition Dynamics »
Simon Dobers · Simon Dobers · Hannes Stärk · Xiang Fu · Dominique Beaini · Stephan Günnemann -
2023 : Transition Path Sampling with Boltzmann Generator-based MCMC Moves »
Michael Plainer · Hannes Stärk · Charlotte Bunne · Stephan Günnemann -
2023 : Transition Path Sampling with Boltzmann Generator-based MCMC Moves »
Michael Plainer · Hannes Stärk · Charlotte Bunne · Stephan Günnemann -
2023 : On the Adversarial Robustness of Graph Contrastive Learning Methods »
Filippo Guerranti · Zinuo Yi · Anna Starovoit · Rafiq Kamel · Simon Geisler · Stephan Günnemann -
2023 : Poisoning $\times$ Evasion: Symbiotic Adversarial Robustness for Graph Neural Networks »
Ege Erdogan · Simon Geisler · Stephan Günnemann -
2023 : Adversarial Attacks and Defenses in Large Language Models: Old and New Threats »
Leo Schwinn · David Dobre · Stephan Günnemann · Gauthier Gidel -
2023 Poster: (Provable) Adversarial Robustness for Group Equivariant Tasks: Graphs, Point Clouds, Molecules, and More »
Jan Schuchardt · Yan Scholten · Stephan Günnemann -
2023 Poster: Hierarchical Randomized Smoothing »
Yan Scholten · Jan Schuchardt · Aleksandar Bojchevski · Stephan Günnemann -
2023 Poster: Add and Thin: Diffusion for Temporal Point Processes »
David Lüdke · Marin Biloš · Oleksandr Shchur · Marten Lienen · Stephan Günnemann -
2023 Poster: Adversarial Training for Graph Neural Networks: Pitfalls, Solutions, and New Directions »
Lukas Gosch · Simon Geisler · Daniel Sturm · Bertrand Charpentier · Daniel Zügner · Stephan Günnemann -
2022 : Contributed Talk: Revisiting Robustness in Graph Machine Learning »
Lukas Gosch · Daniel Sturm · Simon Geisler · Stephan Günnemann -
2022 Poster: Are Defenses for Graph Neural Networks Robust? »
Felix Mujkanovic · Simon Geisler · Stephan Günnemann · Aleksandar Bojchevski -
2022 Poster: Invariance-Aware Randomized Smoothing Certificates »
Jan Schuchardt · Stephan Günnemann -
2022 Poster: Predicting Cellular Responses to Novel Drug Perturbations at a Single-Cell Resolution »
Leon Hetzel · Simon Boehm · Niki Kilbertus · Stephan Günnemann · mohammad lotfollahi · Fabian Theis -
2022 Poster: Randomized Message-Interception Smoothing: Gray-box Certificates for Graph Neural Networks »
Yan Scholten · Jan Schuchardt · Simon Geisler · Aleksandar Bojchevski · Stephan Günnemann -
2021 Poster: Robustness of Graph Neural Networks at Scale »
Simon Geisler · Tobias Schmidt · Hakan Şirin · Daniel Zügner · Aleksandar Bojchevski · Stephan Günnemann -
2021 Poster: Neural Flows: Efficient Alternative to Neural ODEs »
Marin Biloš · Johanna Sommer · Syama Sundar Rangapuram · Tim Januschowski · Stephan Günnemann -
2021 Poster: Detecting Anomalous Event Sequences with Temporal Point Processes »
Oleksandr Shchur · Ali Caner Turkmen · Tim Januschowski · Jan Gasthaus · Stephan Günnemann -
2021 Poster: GemNet: Universal Directional Graph Neural Networks for Molecules »
Johannes Gasteiger · Florian Becker · Stephan Günnemann -
2021 Poster: Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification »
Maximilian Stadler · Bertrand Charpentier · Simon Geisler · Daniel Zügner · Stephan Günnemann -
2020 Poster: Fast and Flexible Temporal Point Processes with Triangular Maps »
Oleksandr Shchur · Nicholas Gao · Marin Biloš · Stephan Günnemann -
2020 Poster: Deep Rao-Blackwellised Particle Filters for Time Series Forecasting »
Richard Kurle · Syama Sundar Rangapuram · Emmanuel de Bézenac · Stephan Günnemann · Jan Gasthaus -
2020 Poster: Reliable Graph Neural Networks via Robust Aggregation »
Simon Geisler · Daniel Zügner · Stephan Günnemann -
2020 Oral: Fast and Flexible Temporal Point Processes with Triangular Maps »
Oleksandr Shchur · Nicholas Gao · Marin Biloš · Stephan Günnemann -
2020 Poster: Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts »
Bertrand Charpentier · Daniel Zügner · Stephan Günnemann -
2019 Poster: Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift »
Stephan Rabanser · Stephan Günnemann · Zachary Lipton -
2019 Poster: Diffusion Improves Graph Learning »
Johannes Gasteiger · Stefan Weißenberger · Stephan Günnemann -
2019 Poster: Uncertainty on Asynchronous Time Event Prediction »
Marin Biloš · Bertrand Charpentier · Stephan Günnemann -
2019 Spotlight: Uncertainty on Asynchronous Time Event Prediction »
Marin Biloš · Bertrand Charpentier · Stephan Günnemann -
2019 Poster: Certifiable Robustness to Graph Perturbations »
Aleksandar Bojchevski · Stephan Günnemann