Timezone: »
While causal models are becoming one of the mainstays of machine learning, the problem of uncertainty quantification in causal inference remains challenging. In this paper, we study the causal data fusion problem, where data arising from multiple causal graphs are combined to estimate the average treatment effect of a target variable. As data arises from multiple sources and can vary in quality and sample size, principled uncertainty quantification becomes essential. To that end, we introduce \emph{Bayesian Causal Mean Processes}, the framework which combines ideas from probabilistic integration and kernel mean embeddings to represent interventional distributions in the reproducing kernel Hilbert space, while taking into account the uncertainty within each causal graph. To demonstrate the informativeness of our uncertainty estimation, we apply our method to the Causal Bayesian Optimisation task and show improvements over state-of-the-art methods.
Author Information
Siu Lun Chau (University of Oxford)
Jean-Francois Ton (University of Oxford)
Javier González (Microsoft Research Cambridge)
Yee Teh (DeepMind)
Dino Sejdinovic (University of Oxford)
More from the Same Authors
-
2021 : Invariant Priors for Bayesian Quadrature »
Masha Naslidnyk · Javier González · Maren Mahsereci -
2021 : Uncertainty Quantification in End-to-End Implicit Neural Representations for Medical Imaging »
Francisca Vasconcelos · Bobby He · Yee Teh -
2022 Poster: Giga-scale Kernel Matrix-Vector Multiplication on GPU »
Robert Hu · Siu Lun Chau · Dino Sejdinovic · Joan Glaunès -
2022 Poster: Explaining Preferences with Shapley Values »
Robert Hu · Siu Lun Chau · Jaime Ferrando Huertas · Dino Sejdinovic -
2022 Poster: RKHS-SHAP: Shapley Values for Kernel Methods »
Siu Lun Chau · Robert Hu · Javier González · Dino Sejdinovic -
2021 : Panel »
Mohammad Emtiyaz Khan · Atoosa Kasirzadeh · Anna Rogers · Javier González · Suresh Venkatasubramanian · Robert Williamson -
2021 Poster: On Contrastive Representations of Stochastic Processes »
Emile Mathieu · Adam Foster · Yee Teh -
2021 Poster: Dynamic Causal Bayesian Optimization »
Virginia Aglietti · Neil Dhir · Javier González · Theodoros Damoulas -
2021 Poster: Group Equivariant Subsampling »
Jin Xu · Hyunjik Kim · Thomas Rainforth · Yee Teh -
2021 Poster: Powerpropagation: A sparsity inducing weight reparameterisation »
Jonathan Richard Schwarz · Siddhant Jayakumar · Razvan Pascanu · Peter E Latham · Yee Teh -
2021 Poster: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations »
Tim G. J. Rudner · Cong Lu · Michael A Osborne · Yarin Gal · Yee Teh -
2021 Poster: Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels »
Michael Hutchinson · Alexander Terenin · Viacheslav Borovitskiy · So Takao · Yee Teh · Marc Deisenroth -
2021 Poster: Deconditional Downscaling with Gaussian Processes »
Siu Lun Chau · Shahine Bouabid · Dino Sejdinovic -
2021 Poster: Neural Ensemble Search for Uncertainty Estimation and Dataset Shift »
Sheheryar Zaidi · Arber Zela · Thomas Elsken · Chris C Holmes · Frank Hutter · Yee Teh -
2020 Poster: BOSS: Bayesian Optimization over String Spaces »
Henry Moss · David Leslie · Daniel Beck · Javier González · Paul Rayson -
2020 Poster: Multi-task Causal Learning with Gaussian Processes »
Virginia Aglietti · Theodoros Damoulas · Mauricio Álvarez · Javier González -
2020 Spotlight: BOSS: Bayesian Optimization over String Spaces »
Henry Moss · David Leslie · Daniel Beck · Javier González · Paul Rayson -
2019 : Coffee/Poster session 1 »
Shiro Takagi · Khurram Javed · Johanna Sommer · Amr Sharaf · Pierluca D'Oro · Ying Wei · Sivan Doveh · Colin White · Santiago Gonzalez · Cuong Nguyen · Mao Li · Tianhe Yu · Tiago Ramalho · Masahiro Nomura · Ahsan Alvi · Jean-Francois Ton · W. Ronny Huang · Jessica Lee · Sebastian Flennerhag · Michael Zhang · Abram Friesen · Paul Blomstedt · Alina Dubatovka · Sergey Bartunov · Subin Yi · Iaroslav Shcherbatyi · Christian Simon · Zeyuan Shang · David MacLeod · Lu Liu · Liam Fowl · Diego Mesquita · Deirdre Quillen -
2019 Poster: Hyperparameter Learning via Distributional Transfer »
Ho Chung Law · Peilin Zhao · Leung Sing Chan · Junzhou Huang · Dino Sejdinovic -
2019 Poster: Meta-Surrogate Benchmarking for Hyperparameter Optimization »
Aaron Klein · Zhenwen Dai · Frank Hutter · Neil Lawrence · Javier González -
2018 : Introduction of the workshop »
Razvan Pascanu · Yee Teh · Mark Ring · Marc Pickett -
2018 Workshop: Continual Learning »
Razvan Pascanu · Yee Teh · Marc Pickett · Mark Ring -
2018 Poster: Causal Inference via Kernel Deviance Measures »
Jovana Mitrovic · Dino Sejdinovic · Yee Whye Teh -
2018 Spotlight: Causal Inference via Kernel Deviance Measures »
Jovana Mitrovic · Dino Sejdinovic · Yee Whye Teh -
2018 Poster: Variational Learning on Aggregate Outputs with Gaussian Processes »
Ho Chung Law · Dino Sejdinovic · Ewan Cameron · Tim Lucas · Seth Flaxman · Katherine Battle · Kenji Fukumizu -
2018 Poster: Hamiltonian Variational Auto-Encoder »
Anthony Caterini · Arnaud Doucet · Dino Sejdinovic -
2017 Poster: Distral: Robust multitask reinforcement learning »
Yee Teh · Victor Bapst · Wojciech Czarnecki · John Quan · James Kirkpatrick · Raia Hadsell · Nicolas Heess · Razvan Pascanu -
2017 Poster: Filtering Variational Objectives »
Chris Maddison · John Lawson · George Tucker · Nicolas Heess · Mohammad Norouzi · Andriy Mnih · Arnaud Doucet · Yee Teh -
2017 Poster: Testing and Learning on Distributions with Symmetric Noise Invariance »
Ho Chung Law · Christopher Yau · Dino Sejdinovic