Timezone: »
Poster
Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex Decentralized Optimization Over Time-Varying Networks
Dmitry Kovalev · Elnur Gasanov · Alexander Gasnikov · Peter Richtarik
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network whose links are allowed to change in time. We solve two fundamental problems for this task. First, we establish {\em the first lower bounds} on the number of decentralized communication rounds and the number of local computations required to find an $\epsilon$-accurate solution. Second, we design two {\em optimal algorithms} that attain these lower bounds: (i) a variant of the recently proposed algorithm ADOM (Kovalev et al, 2021) enhanced via a multi-consensus subroutine, which is optimal in the case when access to the dual gradients is assumed, and (ii) a novel algorithm, called ADOM+, which is optimal in the case when access to the primal gradients is assumed. We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
Author Information
Dmitry Kovalev (KAUST)
Elnur Gasanov (KAUST)
Alexander Gasnikov (Moscow Institute of Physics and Technology)
Peter Richtarik (KAUST)
More from the Same Authors
-
2021 : Decentralized Personalized Federated Learning: Lower Bounds and Optimal Algorithm for All Personalization Modes »
Abdurakhmon Sadiev · Ekaterina Borodich · Darina Dvinskikh · Aleksandr Beznosikov · Alexander Gasnikov -
2021 : Decentralized Personalized Federated Learning: Lower Bounds and Optimal Algorithm for All Personalization Modes »
Abdurakhmon Sadiev · Ekaterina Borodich · Darina Dvinskikh · Aleksandr Beznosikov · Alexander Gasnikov -
2021 : Decentralized Personalized Federated Min-Max Problems »
Ekaterina Borodich · Aleksandr Beznosikov · Abdurakhmon Sadiev · Vadim Sushko · Alexander Gasnikov -
2021 : FedMix: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning »
Elnur Gasanov · Ahmed Khaled Ragab Bayoumi · Samuel Horváth · Peter Richtarik -
2021 : FedMix: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning »
Elnur Gasanov · Ahmed Khaled Ragab Bayoumi · Samuel Horváth · Peter Richtarik -
2022 : Effects of momentum scaling for SGD »
Dmitry A. Pasechnyuk · Alexander Gasnikov · Martin Takac -
2023 Poster: Accelerated Zeroth-order Method for Non-Smooth Stochastic Convex Optimization Problem with Infinite Variance »
Nikita Kornilov · Ohad Shamir · Aleksandr Lobanov · Alexander Gasnikov · Innokentiy Shibaev · Eduard Gorbunov · Darina Dvinskikh · Samuel Horváth -
2023 Poster: Similarity, Compression and Local Steps: Three Pillars of Efficient Communications for Distributed Variational Inequalities »
Aleksandr Beznosikov · Martin Takac · Alexander Gasnikov -
2023 Poster: First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities »
Aleksandr Beznosikov · Sergey Samsonov · Marina Sheshukova · Alexander Gasnikov · Alexey Naumov · Eric Moulines -
2022 Spotlight: Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling »
Dmitry Kovalev · Alexander Gasnikov · Peter Richtarik -
2022 Spotlight: Communication Acceleration of Local Gradient Methods via an Accelerated Primal-Dual Algorithm with an Inexact Prox »
Abdurakhmon Sadiev · Dmitry Kovalev · Peter Richtarik -
2022 Spotlight: The First Optimal Acceleration of High-Order Methods in Smooth Convex Optimization »
Dmitry Kovalev · Alexander Gasnikov -
2022 Spotlight: Distributed Methods with Compressed Communication for Solving Variational Inequalities, with Theoretical Guarantees »
Aleksandr Beznosikov · Peter Richtarik · Michael Diskin · Max Ryabinin · Alexander Gasnikov -
2022 Spotlight: Optimal Algorithms for Decentralized Stochastic Variational Inequalities »
Dmitry Kovalev · Aleksandr Beznosikov · Abdurakhmon Sadiev · Michael Persiianov · Peter Richtarik · Alexander Gasnikov -
2022 Spotlight: Lightning Talks 4A-1 »
Jiawei Huang · Su Jia · Abdurakhmon Sadiev · Ruomin Huang · Yuanyu Wan · Denizalp Goktas · Jiechao Guan · Andrew Li · Wei-Wei Tu · Li Zhao · Amy Greenwald · Jiawei Huang · Dmitry Kovalev · Yong Liu · Wenjie Liu · Peter Richtarik · Lijun Zhang · Zhiwu Lu · R Ravi · Tao Qin · Wei Chen · Hu Ding · Nan Jiang · Tie-Yan Liu -
2022 Spotlight: Optimal Gradient Sliding and its Application to Optimal Distributed Optimization Under Similarity »
Dmitry Kovalev · Aleksandr Beznosikov · Ekaterina Borodich · Alexander Gasnikov · Gesualdo Scutari -
2022 Spotlight: The First Optimal Algorithm for Smooth and Strongly-Convex-Strongly-Concave Minimax Optimization »
Dmitry Kovalev · Alexander Gasnikov -
2022 Spotlight: Decentralized Local Stochastic Extra-Gradient for Variational Inequalities »
Aleksandr Beznosikov · Pavel Dvurechenskii · Anastasiia Koloskova · Valentin Samokhin · Sebastian Stich · Alexander Gasnikov -
2022 Poster: Optimal Gradient Sliding and its Application to Optimal Distributed Optimization Under Similarity »
Dmitry Kovalev · Aleksandr Beznosikov · Ekaterina Borodich · Alexander Gasnikov · Gesualdo Scutari -
2022 Poster: Communication Acceleration of Local Gradient Methods via an Accelerated Primal-Dual Algorithm with an Inexact Prox »
Abdurakhmon Sadiev · Dmitry Kovalev · Peter Richtarik -
2022 Poster: Clipped Stochastic Methods for Variational Inequalities with Heavy-Tailed Noise »
Eduard Gorbunov · Marina Danilova · David Dobre · Pavel Dvurechenskii · Alexander Gasnikov · Gauthier Gidel -
2022 Poster: The First Optimal Algorithm for Smooth and Strongly-Convex-Strongly-Concave Minimax Optimization »
Dmitry Kovalev · Alexander Gasnikov -
2022 Poster: A Damped Newton Method Achieves Global $\mathcal O \left(\frac{1}{k^2}\right)$ and Local Quadratic Convergence Rate »
Slavomír Hanzely · Dmitry Kamzolov · Dmitry Pasechnyuk · Alexander Gasnikov · Peter Richtarik · Martin Takac -
2022 Poster: The First Optimal Acceleration of High-Order Methods in Smooth Convex Optimization »
Dmitry Kovalev · Alexander Gasnikov -
2022 Poster: Optimal Algorithms for Decentralized Stochastic Variational Inequalities »
Dmitry Kovalev · Aleksandr Beznosikov · Abdurakhmon Sadiev · Michael Persiianov · Peter Richtarik · Alexander Gasnikov -
2022 Poster: Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling »
Dmitry Kovalev · Alexander Gasnikov · Peter Richtarik -
2022 Poster: Distributed Methods with Compressed Communication for Solving Variational Inequalities, with Theoretical Guarantees »
Aleksandr Beznosikov · Peter Richtarik · Michael Diskin · Max Ryabinin · Alexander Gasnikov -
2022 Poster: Decentralized Local Stochastic Extra-Gradient for Variational Inequalities »
Aleksandr Beznosikov · Pavel Dvurechenskii · Anastasiia Koloskova · Valentin Samokhin · Sebastian Stich · Alexander Gasnikov -
2021 Poster: Smoothness Matrices Beat Smoothness Constants: Better Communication Compression Techniques for Distributed Optimization »
Mher Safaryan · Filip Hanzely · Peter Richtarik -
2021 Poster: Distributed Saddle-Point Problems Under Data Similarity »
Aleksandr Beznosikov · Gesualdo Scutari · Alexander Rogozin · Alexander Gasnikov -
2021 Poster: EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback »
Peter Richtarik · Igor Sokolov · Ilyas Fatkhullin -
2021 Poster: Error Compensated Distributed SGD Can Be Accelerated »
Xun Qian · Peter Richtarik · Tong Zhang -
2021 Poster: CANITA: Faster Rates for Distributed Convex Optimization with Communication Compression »
Zhize Li · Peter Richtarik -
2021 Oral: EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback »
Peter Richtarik · Igor Sokolov · Ilyas Fatkhullin -
2020 Poster: Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient Clipping »
Eduard Gorbunov · Marina Danilova · Alexander Gasnikov -
2020 Poster: Linearly Converging Error Compensated SGD »
Eduard Gorbunov · Dmitry Kovalev · Dmitry Makarenko · Peter Richtarik -
2020 Spotlight: Linearly Converging Error Compensated SGD »
Eduard Gorbunov · Dmitry Kovalev · Dmitry Makarenko · Peter Richtarik -
2020 Poster: Optimal and Practical Algorithms for Smooth and Strongly Convex Decentralized Optimization »
Dmitry Kovalev · Adil Salim · Peter Richtarik -
2019 Poster: RSN: Randomized Subspace Newton »
Robert Gower · Dmitry Kovalev · Felix Lieder · Peter Richtarik -
2019 Poster: Stochastic Proximal Langevin Algorithm: Potential Splitting and Nonasymptotic Rates »
Adil Salim · Dmitry Kovalev · Peter Richtarik -
2019 Spotlight: Stochastic Proximal Langevin Algorithm: Potential Splitting and Nonasymptotic Rates »
Adil Salim · Dmitry Kovalev · Peter Richtarik -
2018 Poster: Decentralize and Randomize: Faster Algorithm for Wasserstein Barycenters »
Pavel Dvurechenskii · Darina Dvinskikh · Alexander Gasnikov · Cesar Uribe · Angelia Nedich -
2018 Spotlight: Decentralize and Randomize: Faster Algorithm for Wasserstein Barycenters »
Pavel Dvurechenskii · Darina Dvinskikh · Alexander Gasnikov · Cesar Uribe · Angelia Nedich -
2016 Poster: Learning Supervised PageRank with Gradient-Based and Gradient-Free Optimization Methods »
Lev Bogolubsky · Pavel Dvurechenskii · Alexander Gasnikov · Gleb Gusev · Yurii Nesterov · Andrei M Raigorodskii · Aleksey Tikhonov · Maksim Zhukovskii -
2015 Poster: Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling »
Zheng Qu · Peter Richtarik · Tong Zhang