Timezone: »
Tracking objects of interest in a video is one of the most popular and widely applicable problems in computer vision. However, with the years, a Cambrian explosion of use cases and benchmarks has fragmented the problem in a multitude of different experimental setups. As a consequence, the literature has fragmented too, and now novel approaches proposed by the community are usually specialised to fit only one specific setup. To understand to what extent this specialisation is necessary, in this work we present UniTrack, a solution to address five different tasks within the same framework. UniTrack consists of a single and task-agnostic appearance model, which can be learned in a supervised or self-supervised fashion, and multiple ``heads'' that address individual tasks and do not require training. We show how most tracking tasks can be solved within this framework, and that the same appearance model can be successfully used to obtain results that are competitive against specialised methods for most of the tasks considered. The framework also allows us to analyse appearance models obtained with the most recent self-supervised methods, thus extending their evaluation and comparison to a larger variety of important problems.
Author Information
Zhongdao Wang (Tsinghua University)
Hengshuang Zhao (The Chinese University of Hong Kong)
Ya-Li Li (Tsinghua University)
Shengjin Wang (Tsinghua University, Tsinghua University)
Philip Torr (University of Oxford)
Luca Bertinetto (University of Oxford)
Luca Bertinetto is a PhD candidate in the Torr Vision Group at the University of Oxford. The main focus of his doctorate is the problem of agnostic object tracking, which he likes to tackle using simple and effective approaches. Before getting lost among the spires of Oxford, he obtained a joint MSc in Computer Engineering between the Polytechnic University of Turin and Telecom Paris Tech. He has published at CVPR and NIPS and reviewed for PAMI.
More from the Same Authors
-
2021 : Occluded Video Instance Segmentation: Dataset and ICCV 2021 Challenge »
Jiyang Qi · Yan Gao · Yao Hu · Xinggang Wang · Xiaoyu Liu · Xiang Bai · Serge Belongie · Alan Yuille · Philip Torr · Song Bai -
2021 : Are Vision Transformers Always More Robust Than Convolutional Neural Networks? »
Francesco Pinto · Philip Torr · Puneet Dokania -
2021 : Mix-MaxEnt: Improving Accuracy and Uncertainty Estimates of Deterministic Neural Networks »
Francesco Pinto · Harry Yang · Ser Nam Lim · Philip Torr · Puneet Dokania -
2022 Poster: Self-Supervised Learning via Maximum Entropy Coding »
Xin Liu · Zhongdao Wang · Ya-Li Li · Shengjin Wang -
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: Self-Supervised Learning via Maximum Entropy Coding »
Xin Liu · Zhongdao Wang · Ya-Li Li · Shengjin Wang -
2022 Poster: Using Mixup as a Regularizer Can Surprisingly Improve Accuracy & Out-of-Distribution Robustness »
Francesco Pinto · Harry Yang · Ser Nam Lim · Philip Torr · Puneet Dokania -
2022 Poster: Structure-Preserving 3D Garment Modeling with Neural Sewing Machines »
Xipeng Chen · Guangrun Wang · Dizhong Zhu · Xiaodan Liang · Philip Torr · Liang Lin -
2022 Poster: Learn what matters: cross-domain imitation learning with task-relevant embeddings »
Tim Franzmeyer · Philip Torr · João Henriques -
2022 Poster: Make Some Noise: Reliable and Efficient Single-Step Adversarial Training »
Pau de Jorge Aranda · Adel Bibi · Riccardo Volpi · Amartya Sanyal · Philip Torr · Gregory Rogez · Puneet Dokania -
2022 Poster: FedSR: A Simple and Effective Domain Generalization Method for Federated Learning »
A. Tuan Nguyen · Philip Torr · Ser Nam Lim -
2021 : Shape-Tailored Deep Neural Networks With PDEs »
Naeemullah Khan · Angira Sharma · Philip Torr · Ganesh Sundaramoorthi -
2021 Poster: You Never Cluster Alone »
Yuming Shen · Ziyi Shen · Menghan Wang · Jie Qin · Philip Torr · Ling Shao -
2021 Poster: Looking Beyond Single Images for Contrastive Semantic Segmentation Learning »
FEIHU ZHANG · Philip Torr · Rene Ranftl · Stephan Richter -
2021 Poster: FACMAC: Factored Multi-Agent Centralised Policy Gradients »
Bei Peng · Tabish Rashid · Christian Schroeder de Witt · Pierre-Alexandre Kamienny · Philip Torr · Wendelin Boehmer · Shimon Whiteson -
2021 Poster: Combating Noise: Semi-supervised Learning by Region Uncertainty Quantification »
Zhenyu Wang · Ya-Li Li · Ye Guo · Shengjin Wang -
2021 Poster: A Continuous Mapping For Augmentation Design »
Keyu Tian · Chen Lin · Ser Nam Lim · Wanli Ouyang · Puneet Dokania · Philip Torr -
2021 Poster: On Episodes, Prototypical Networks, and Few-Shot Learning »
Steinar Laenen · Luca Bertinetto -
2021 Poster: Overcoming the Convex Barrier for Simplex Inputs »
Harkirat Singh Behl · M. Pawan Kumar · Philip Torr · Krishnamurthy Dvijotham -
2020 Poster: STEER : Simple Temporal Regularization For Neural ODE »
Arnab Ghosh · Harkirat Singh Behl · Emilien Dupont · Philip Torr · Vinay Namboodiri -
2020 Poster: Calibrating Deep Neural Networks using Focal Loss »
Jishnu Mukhoti · Viveka Kulharia · Amartya Sanyal · Stuart Golodetz · Philip Torr · Puneet Dokania -
2020 Poster: Lightweight Generative Adversarial Networks for Text-Guided Image Manipulation »
Bowen Li · Xiaojuan Qi · Philip Torr · Thomas Lukasiewicz -
2020 Poster: Continual Learning in Low-rank Orthogonal Subspaces »
Arslan Chaudhry · Naeemullah Khan · Puneet Dokania · Philip Torr -
2019 : Coffee + Posters »
Changhao Chen · Nils Gählert · Edouard Leurent · Johannes Lehner · Apratim Bhattacharyya · Harkirat Singh Behl · Teck Yian Lim · Shiho Kim · Jelena Novosel · Błażej Osiński · Arindam Das · Ruobing Shen · Jeffrey Hawke · Joachim Sicking · Babak Shahian Jahromi · Theja Tulabandhula · Claudio Michaelis · Evgenia Rusak · WENHANG BAO · Hazem Rashed · JP Chen · Amin Ansari · Jaekwang Cha · Mohamed Zahran · Daniele Reda · Jinhyuk Kim · Kim Dohyun · Ho Suk · Junekyo Jhung · Alexander Kister · Matthias Fahrland · Adam Jakubowski · Piotr Miłoś · Jean Mercat · Bruno Arsenali · Silviu Homoceanu · Xiao-Yang Liu · Philip Torr · Ahmad El Sallab · Ibrahim Sobh · Anurag Arnab · Krzysztof Galias -
2019 Poster: Multi-Agent Common Knowledge Reinforcement Learning »
Christian Schroeder de Witt · Jakob Foerster · Gregory Farquhar · Philip Torr · Wendelin Boehmer · Shimon Whiteson -
2019 Poster: Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model »
Atilim Gunes Baydin · Lei Shao · Wahid Bhimji · Lukas Heinrich · Saeid Naderiparizi · Andreas Munk · Jialin Liu · Bradley Gram-Hansen · Gilles Louppe · Lawrence Meadows · Philip Torr · Victor Lee · Kyle Cranmer · Mr. Prabhat · Frank Wood -
2019 Poster: Controllable Text-to-Image Generation »
Bowen Li · Xiaojuan Qi · Thomas Lukasiewicz · Philip Torr -
2018 Poster: A Unified View of Piecewise Linear Neural Network Verification »
Rudy Bunel · Ilker Turkaslan · Philip Torr · Pushmeet Kohli · Pawan K Mudigonda -
2017 Poster: Learning Disentangled Representations with Semi-Supervised Deep Generative Models »
Siddharth Narayanaswamy · Brooks Paige · Jan-Willem van de Meent · Alban Desmaison · Noah Goodman · Pushmeet Kohli · Frank Wood · Philip Torr -
2016 Poster: Adaptive Neural Compilation »
Rudy Bunel · Alban Desmaison · Pawan K Mudigonda · Pushmeet Kohli · Philip Torr -
2016 Poster: Learning feed-forward one-shot learners »
Luca Bertinetto · João Henriques · Jack Valmadre · Philip Torr · Andrea Vedaldi -
2013 Poster: Higher Order Priors for Joint Intrinsic Image, Objects, and Attributes Estimation »
Vibhav Vineet · Carsten Rother · Philip Torr -
2011 Poster: Learning Anchor Planes for Classification »
Ziming Zhang · Lubor Ladicky · Philip Torr · Amir Saffari -
2011 Demonstration: Online structured-output learning for real-time object tracking and detection »
Sam Hare · Amir Saffari · Philip Torr -
2008 Poster: Improved Moves for Truncated Convex Models »
Pawan K Mudigonda · Philip Torr -
2008 Spotlight: Improved Moves for Truncated Convex Models »
Pawan K Mudigonda · Philip Torr -
2007 Oral: An Analysis of Convex Relaxations for MAP Estimation »
Pawan K Mudigonda · Vladimir Kolmogorov · Philip Torr -
2007 Poster: An Analysis of Convex Relaxations for MAP Estimation »
Pawan K Mudigonda · Vladimir Kolmogorov · Philip Torr