Timezone: »
Poster
Beltrami Flow and Neural Diffusion on Graphs
Benjamin Chamberlain · James Rowbottom · Davide Eynard · Francesco Di Giovanni · Xiaowen Dong · Michael Bronstein
We propose a novel class of graph neural networks based on the discretized Beltrami flow, a non-Euclidean diffusion PDE. In our model, node features are supplemented with positional encodings derived from the graph topology and jointly evolved by the Beltrami flow, producing simultaneously continuous feature learning, topology evolution. The resulting model generalizes many popular graph neural networks and achieves state-of-the-art results on several benchmarks.
Author Information
Benjamin Chamberlain (Twitter)
James Rowbottom (Twitter)
Davide Eynard (Università della Svizzera Italiana)
Francesco Di Giovanni (Twitter)
Xiaowen Dong (University of Oxford)
Michael Bronstein (Imperial College London / Twitter)
More from the Same Authors
-
2021 : Interaction data are identifiable even across long periods of time »
Ana-Maria Cretu · Federico Monti · Stefano Marrone · Xiaowen Dong · Michael Bronstein · Yves-Alexandre Montjoye -
2022 : On the Unreasonable Effectiveness of Feature Propagation in Learning on Graphs with Missing Node Features »
Emanuele Rossi · Henry Kenlay · Maria Gorinova · Benjamin Chamberlain · Xiaowen Dong · Michael Bronstein -
2022 : Hyperbolic Deep Reinforcement Learning »
Edoardo Cetin · Benjamin Chamberlain · Michael Bronstein · jonathan j hunt -
2022 : Understanding stock market instability via graph auto-encoders »
Dragos Gorduza · Xiaowen Dong · Stefan Zohren -
2022 : Invited talk: Francesco Di Giovanni »
Francesco Di Giovanni · Francesco Di Giovanni -
2022 Poster: Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs »
Cristian Bodnar · Francesco Di Giovanni · Benjamin Chamberlain · Pietro Lió · Michael Bronstein -
2021 : GRAND: Graph Neural Diffusion »
Benjamin Chamberlain · James Rowbottom · Maria Gorinova · Stefan Webb · Emanuele Rossi · Michael Bronstein -
2021 : Invited Talk 1: Michael Bronstein: Geometric deep learning for functional protein design »
Michael Bronstein -
2021 Poster: Learning to Learn Graph Topologies »
Xingyue Pu · Tianyue Cao · Xiaoyun Zhang · Xiaowen Dong · Siheng Chen -
2021 Poster: Adversarial Attacks on Graph Classifiers via Bayesian Optimisation »
Xingchen Wan · Henry Kenlay · Robin Ru · Arno Blaas · Michael A Osborne · Xiaowen Dong -
2021 Poster: Weisfeiler and Lehman Go Cellular: CW Networks »
Cristian Bodnar · Fabrizio Frasca · Nina Otter · Yuguang Wang · Pietro Liò · Guido Montufar · Michael Bronstein -
2021 Poster: Partition and Code: learning how to compress graphs »
Giorgos Bouritsas · Andreas Loukas · Nikolaos Karalias · Michael Bronstein -
2020 : Session 1 | Invited talk: Michael Bronstein, "Geometric Deep Learning for Functional Protein Design" »
Michael Bronstein · Atilim Gunes Baydin -
2020 Poster: Fast geometric learning with symbolic matrices »
Jean Feydy · Alexis Glaunès · Benjamin Charlier · Michael Bronstein -
2020 Spotlight: Fast geometric learning with symbolic matrices »
Jean Feydy · Alexis Glaunès · Benjamin Charlier · Michael Bronstein