Timezone: »
Poster
A Convergence Analysis of Gradient Descent on Graph Neural Networks
Pranjal Awasthi · Abhimanyu Das · Sreenivas Gollapudi
Graph Neural Networks~(GNNs) are a powerful class of architectures for solving learning problems on graphs. While many variants of GNNs have been proposed in the literature and have achieved strong empirical performance, their theoretical properties are less well understood. In this work we study the convergence properties of the gradient descent algorithm when used to train GNNs. In particular, we consider the realizable setting where the data is generated from a network with unknown weights and our goal is to study conditions under which gradient descent on a GNN architecture can recover near optimal solutions. While such analysis has been performed in recent years for other architectures such as fully connected feed-forward networks, the message passing nature of the updates in a GNN poses a new challenge in understanding the nature of the gradient descent updates. We take a step towards overcoming this by proving that for the case of deep linear GNNs gradient descent provably recovers solutions up to error $\epsilon$ in $O(\text{log}(1/\epsilon))$ iterations, under natural assumptions on the data distribution. Furthermore, for the case of one-round GNNs with ReLU activations, we show that gradient descent provably recovers solutions up to error $\epsilon$ in $O(\frac{1}{\epsilon^2} \log(\frac{1}{\epsilon}))$ iterations.
Author Information
Pranjal Awasthi (Google)
Abhimanyu Das (University of Southern California)
Sreenivas Gollapudi (Google Research)
More from the Same Authors
-
2021 Spotlight: On the Existence of The Adversarial Bayes Classifier »
Pranjal Awasthi · Natalie Frank · Mehryar Mohri -
2021 Spotlight: Calibration and Consistency of Adversarial Surrogate Losses »
Pranjal Awasthi · Natalie Frank · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 : Theory and Algorithm for Batch Distribution Drift Problems »
Pranjal Awasthi · Corinna Cortes · Christopher Mohri -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 : "I pick you choose": Joint human-algorithm decision making in multi-armed bandits »
Kate Donahue · Sreenivas Gollapudi · Kostas Kollias -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 Poster: On the Adversarial Robustness of Mixture of Experts »
Joan Puigcerver · Rodolphe Jenatton · Carlos Riquelme · Pranjal Awasthi · Srinadh Bhojanapalli -
2022 Poster: Trimmed Maximum Likelihood Estimation for Robust Generalized Linear Model »
Pranjal Awasthi · Abhimanyu Das · Weihao Kong · Rajat Sen -
2022 Poster: Multi-Class $H$-Consistency Bounds »
Pranjal Awasthi · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2022 Poster: Semi-supervised Active Linear Regression »
Nived Rajaraman · Fnu Devvrit · Pranjal Awasthi -
2021 Poster: On the Existence of The Adversarial Bayes Classifier »
Pranjal Awasthi · Natalie Frank · Mehryar Mohri -
2021 Poster: Efficient Algorithms for Learning Depth-2 Neural Networks with General ReLU Activations »
Pranjal Awasthi · Alex Tang · Aravindan Vijayaraghavan -
2021 Poster: Contextual Recommendations and Low-Regret Cutting-Plane Algorithms »
Sreenivas Gollapudi · Guru Guruganesh · Kostas Kollias · Pasin Manurangsi · Renato Leme · Jon Schneider -
2021 Poster: Neural Active Learning with Performance Guarantees »
Zhilei Wang · Pranjal Awasthi · Christoph Dann · Ayush Sekhari · Claudio Gentile -
2021 Poster: Calibration and Consistency of Adversarial Surrogate Losses »
Pranjal Awasthi · Natalie Frank · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2020 Poster: Adaptive Probing Policies for Shortest Path Routing »
Aditya Bhaskara · Sreenivas Gollapudi · Kostas Kollias · Kamesh Munagala