Timezone: »

 
Poster
Learning Signal-Agnostic Manifolds of Neural Fields
Yilun Du · Katie Collins · Josh Tenenbaum · Vincent Sitzmann

Thu Dec 09 04:30 PM -- 06:00 PM (PST) @

Deep neural networks have been used widely to learn the latent structure of datasets, across modalities such as images, shapes, and audio signals. However, existing models are generally modality-dependent, requiring custom architectures and objectives to process different classes of signals. We leverage neural fields to capture the underlying structure in image, shape, audio and cross-modal audiovisual domains in a modality-independent manner. We cast our task as one of learning a manifold, where we aim to infer a low-dimensional, locally linear subspace in which our data resides. By enforcing coverage of the manifold, local linearity, and local isometry, our model -- dubbed GEM -- learns to capture the underlying structure of datasets across modalities. We can then travel along linear regions of our manifold to obtain perceptually consistent interpolations between samples, and can further use GEM to recover points on our manifold and glean not only diverse completions of input images, but cross-modal hallucinations of audio or image signals. Finally, we show that by walking across the underlying manifold of GEM, we may generate new samples in our signal domains.

Author Information

Yilun Du (MIT)
Katie Collins (University of Cambridge)
Josh Tenenbaum (MIT)

Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).

Vincent Sitzmann (MIT)

Vincent is an incoming Assistant Professor at MIT EECS, where he will lead the Scene Representation Group (scenerepresentations.org). Currently, he is a Postdoc at MIT's CSAIL with Josh Tenenbaum, Bill Freeman, and Fredo Durand. He finished his Ph.D. at Stanford University. His research interest lies in neural scene representations - the way neural networks learn to represent information on our world. His goal is to allow independent agents to reason about our world given visual observations, such as inferring a complete model of a scene with information on geometry, material, lighting etc. from only few observations, a task that is simple for humans, but currently impossible for AI.

More from the Same Authors