Timezone: »
The advancement of generative radiance fields has pushed the boundary of 3D-aware image synthesis. Motivated by the observation that a 3D object should look realistic from multiple viewpoints, these methods introduce a multi-view constraint as regularization to learn valid 3D radiance fields from 2D images. Despite the progress, they often fall short of capturing accurate 3D shapes due to the shape-color ambiguity, limiting their applicability in downstream tasks. In this work, we address this ambiguity by proposing a novel shading-guided generative implicit model that is able to learn a starkly improved shape representation. Our key insight is that an accurate 3D shape should also yield a realistic rendering under different lighting conditions. This multi-lighting constraint is realized by modeling illumination explicitly and performing shading with various lighting conditions. Gradients are derived by feeding the synthesized images to a discriminator. To compensate for the additional computational burden of calculating surface normals, we further devise an efficient volume rendering strategy via surface tracking, reducing the training and inference time by 24% and 48%, respectively. Our experiments on multiple datasets show that the proposed approach achieves photorealistic 3D-aware image synthesis while capturing accurate underlying 3D shapes. We demonstrate improved performance of our approach on 3D shape reconstruction against existing methods, and show its applicability on image relighting. Our code is available at https://github.com/XingangPan/ShadeGAN.
Author Information
Xingang Pan (Max Planck Institute for Informatics)
Xudong XU (The Chinese University of Hong Kong)
Chen Change Loy (Nanyang Technological University)
Christian Theobalt (MPI Informatik)
Bo Dai (Shanghai AI Lab)
More from the Same Authors
-
2021 Spotlight: NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction »
Peng Wang · Lingjie Liu · Yuan Liu · Christian Theobalt · Taku Komura · Wenping Wang -
2021 : Semi-Supervised Domain Generalization with Stochastic StyleMatch »
Kaiyang Zhou · Chen Change Loy · Ziwei Liu -
2022 : MOPA: a Minimalist Off-Policy Approach to Safe-RL »
Hao Sun · Ziping Xu · Zhenghao Peng · Meng Fang · Bo Dai · Bolei Zhou -
2022 : Factor Investing with a Deep Multi-Factor Model »
Zikai Wei · Bo Dai · Dahua Lin -
2022 Poster: Improving GANs with A Dynamic Discriminator »
Ceyuan Yang · Yujun Shen · Yinghao Xu · Deli Zhao · Bo Dai · Bolei Zhou -
2021 Poster: NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction »
Peng Wang · Lingjie Liu · Yuan Liu · Christian Theobalt · Taku Komura · Wenping Wang -
2021 Poster: K-Net: Towards Unified Image Segmentation »
Wenwei Zhang · Jiangmiao Pang · Kai Chen · Chen Change Loy -
2021 Poster: Generative Occupancy Fields for 3D Surface-Aware Image Synthesis »
Xudong XU · Xingang Pan · Dahua Lin · Bo Dai -
2021 Poster: Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data »
Liming Jiang · Bo Dai · Wayne Wu · Chen Change Loy -
2021 Poster: Unsupervised Object-Level Representation Learning from Scene Images »
Jiahao Xie · Xiaohang Zhan · Ziwei Liu · Yew Soon Ong · Chen Change Loy -
2020 Poster: LoopReg: Self-supervised Learning of Implicit Surface Correspondences, Pose and Shape for 3D Human Mesh Registration »
Bharat Lal Bhatnagar · Cristian Sminchisescu · Christian Theobalt · Gerard Pons-Moll -
2020 Oral: LoopReg: Self-supervised Learning of Implicit Surface Correspondences, Pose and Shape for 3D Human Mesh Registration »
Bharat Lal Bhatnagar · Cristian Sminchisescu · Christian Theobalt · Gerard Pons-Moll -
2020 Poster: Neural Sparse Voxel Fields »
Lingjie Liu · Jiatao Gu · Kyaw Zaw Lin · Tat-Seng Chua · Christian Theobalt -
2020 Spotlight: Neural Sparse Voxel Fields »
Lingjie Liu · Jiatao Gu · Kyaw Zaw Lin · Tat-Seng Chua · Christian Theobalt -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2018 Poster: A Neural Compositional Paradigm for Image Captioning »
Bo Dai · Sanja Fidler · Dahua Lin -
2017 Poster: Contrastive Learning for Image Captioning »
Bo Dai · Dahua Lin -
2016 Poster: Local Similarity-Aware Deep Feature Embedding »
Chen Huang · Chen Change Loy · Xiaoou Tang