Timezone: »
Gaussian processes are machine learning models capable of learning unknown functions in a way that represents uncertainty, thereby facilitating construction of optimal decision-making systems. Motivated by a desire to deploy Gaussian processes in novel areas of science, a rapidly-growing line of research has focused on constructively extending these models to handle non-Euclidean domains, including Riemannian manifolds, such as spheres and tori. We propose techniques that generalize this class to model vector fields on Riemannian manifolds, which are important in a number of application areas in the physical sciences. To do so, we present a general recipe for constructing gauge independent kernels, which induce Gaussian vector fields, i.e. vector-valued Gaussian processes coherent withgeometry, from scalar-valued Riemannian kernels. We extend standard Gaussian process training methods, such as variational inference, to this setting. This enables vector-valued Gaussian processes on Riemannian manifolds to be trained using standard methods and makes them accessible to machine learning practitioners.
Author Information
Michael Hutchinson (University of Oxford)
Hi I'm Michael, a first year DPhil student at Oxford under the supervision of Yee Whye Teh and Max Welling. I'm interested in Probabalistic Machine Leanring in general, with a specific interests in distributed learning, generative modelling and uncertianty at a functional level.
Alexander Terenin (University of Cambridge)
Viacheslav Borovitskiy (St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences (PDMI RAS))
So Takao (University College London)
Yee Teh (DeepMind)
Marc Deisenroth (University College London)

Professor Marc Deisenroth is the DeepMind Chair in Artificial Intelligence at University College London and the Deputy Director of UCL's Centre for Artificial Intelligence. He also holds a visiting faculty position at the University of Johannesburg and Imperial College London. Marc's research interests center around data-efficient machine learning, probabilistic modeling and autonomous decision making. Marc was Program Chair of EWRL 2012, Workshops Chair of RSS 2013, EXPO-Co-Chair of ICML 2020, and Tutorials Co-Chair of NeurIPS 2021. In 2019, Marc co-organized the Machine Learning Summer School in London. He received Paper Awards at ICRA 2014, ICCAS 2016, and ICML 2020. He is co-author of the book [Mathematics for Machine Learning](https://mml-book.github.io) published by Cambridge University Press (2020).
More from the Same Authors
-
2021 : Imitation Learning from Pixel Observations for Continuous Control »
Samuel Cohen · Brandon Amos · Marc Deisenroth · Mikael Henaff · Eugene Vinitsky · Denis Yarats -
2021 : On Combining Expert Demonstrations in Imitation Learning via Optimal Transport »
ilana sebag · Samuel Cohen · Marc Deisenroth -
2021 : Sliced Multi-Marginal Optimal Transport »
Samuel Cohen · Alexander Terenin · Yannik Pitcan · Brandon Amos · Marc Deisenroth · Senanayak Sesh Kumar Karri -
2021 : Federated Functional Variational Inference »
Michael Hutchinson · Matthias Reisser · Christos Louizos -
2021 : Uncertainty Quantification in End-to-End Implicit Neural Representations for Medical Imaging »
Francisca Vasconcelos · Bobby He · Yee Teh -
2022 : Actually Sparse Variational Gaussian Processes »
Jake Cunningham · So Takao · Mark van der Wilk · Marc Deisenroth -
2022 : Short-term Prediction and Filtering of Solar Power Using State-Space Gaussian Processes »
So Takao · Sean Nassimiha · Peter Dudfield · Jack Kelly · Marc Deisenroth -
2022 : Optimal Transport for Offline Imitation Learning »
Yicheng Luo · zhengyao Jiang · Samuel Cohen · Edward Grefenstette · Marc Deisenroth -
2022 : Spectral Diffusion Processes »
Angus Phillips · Thomas Seror · Michael Hutchinson · Valentin De Bortoli · Arnaud Doucet · Emile Mathieu -
2023 Poster: Thin and deep Gaussian processes »
Daniel Augusto de Souza · Alexander Nikitin · ST John · Magnus Ross · Mauricio A Álvarez · Marc Deisenroth · João Paulo Gomes · Diego Mesquita · César Lincoln Mattos -
2023 Poster: Metropolis Sampling for Constrained Diffusion Models »
Nic Fishman · Leo Klarner · Emile Mathieu · Michael Hutchinson · Valentin De Bortoli -
2023 Poster: Implicit Manifold Gaussian Process Regression »
Bernardo Fichera · Viacheslav Borovitskiy · Andreas Krause · Aude G Billard -
2023 Poster: Posterior Contraction Rates for Matérn Gaussian Processes on Riemannian Manifolds »
Paul Rosa · Viacheslav Borovitskiy · Alexander Terenin · Judith Rousseau -
2023 Poster: Geometric Neural Diffusion Processes »
Emile Mathieu · Vincent Dutordoir · Michael Hutchinson · Valentin De Bortoli · Yee Whye Teh · Richard Turner -
2023 Poster: Cauchy–Schwarz Regularized Autoencoder »
Linh Tran · Maja Pantic · Marc Deisenroth -
2022 : Panel Discussion »
Jacob Gardner · Marta Blangiardo · Viacheslav Borovitskiy · Jasper Snoek · Paula Moraga · Carolina Osorio -
2022 : Invited Talk: Viacheslav Borovitskiy »
Viacheslav Borovitskiy -
2022 Poster: Riemannian Score-Based Generative Modelling »
Valentin De Bortoli · Emile Mathieu · Michael Hutchinson · James Thornton · Yee Whye Teh · Arnaud Doucet -
2021 Poster: On Contrastive Representations of Stochastic Processes »
Emile Mathieu · Adam Foster · Yee Teh -
2021 Poster: Group Equivariant Subsampling »
Jin Xu · Hyunjik Kim · Thomas Rainforth · Yee Teh -
2021 Poster: Powerpropagation: A sparsity inducing weight reparameterisation »
Jonathan Richard Schwarz · Siddhant Jayakumar · Razvan Pascanu · Peter E Latham · Yee Teh -
2021 Poster: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations »
Tim G. J. Rudner · Cong Lu · Michael A Osborne · Yarin Gal · Yee Teh -
2021 Poster: BayesIMP: Uncertainty Quantification for Causal Data Fusion »
Siu Lun Chau · Jean-Francois Ton · Javier González · Yee Teh · Dino Sejdinovic -
2021 Poster: Neural Ensemble Search for Uncertainty Estimation and Dataset Shift »
Sheheryar Zaidi · Arber Zela · Thomas Elsken · Chris C Holmes · Frank Hutter · Yee Teh -
2020 Workshop: Interpretable Inductive Biases and Physically Structured Learning »
Michael Lutter · Alexander Terenin · Shirley Ho · Lei Wang -
2020 : GENNI: Visualising the Geometry of Equivalences for Neural Network Identifiability »
Arinbjörn Kolbeinsson · Nicholas Jennings · Marc Deisenroth · Daniel Lengyel · Janith Petangoda · Michalis Lazarou · Kate Highnam · John IF Falk -
2020 Poster: Matérn Gaussian Processes on Riemannian Manifolds »
Viacheslav Borovitskiy · Alexander Terenin · Peter Mostowsky · Marc Deisenroth -
2020 Session: Orals & Spotlights Track 25: Probabilistic Models/Statistics »
Marc Deisenroth · Matthew D. Hoffman -
2020 Poster: Probabilistic Active Meta-Learning »
Jean Kaddour · Steindor Saemundsson · Marc Deisenroth -
2020 Tutorial: (Track1) There and Back Again: A Tale of Slopes and Expectations Q&A »
Marc Deisenroth · Cheng Soon Ong -
2020 : Discussion Panel: Hugo Larochelle, Finale Doshi-Velez, Devi Parikh, Marc Deisenroth, Julien Mairal, Katja Hofmann, Phillip Isola, and Michael Bowling »
Hugo Larochelle · Finale Doshi-Velez · Marc Deisenroth · Devi Parikh · Julien Mairal · Katja Hofmann · Phillip Isola · Michael Bowling -
2020 Tutorial: (Track1) There and Back Again: A Tale of Slopes and Expectations »
Marc Deisenroth · Cheng Soon Ong -
2019 : Poster Session »
Clement Canonne · Kwang-Sung Jun · Seth Neel · Di Wang · Giuseppe Vietri · Liwei Song · Jonathan Lebensold · Huanyu Zhang · Lovedeep Gondara · Ang Li · FatemehSadat Mireshghallah · Jinshuo Dong · Anand D Sarwate · Antti Koskela · Joonas Jälkö · Matt Kusner · Dingfan Chen · Mi Jung Park · Ashwin Machanavajjhala · Jayashree Kalpathy-Cramer · · Vitaly Feldman · Andrew Tomkins · Hai Phan · Hossein Esfandiari · Mimansa Jaiswal · Mrinank Sharma · Jeff Druce · Casey Meehan · Zhengli Zhao · Hsiang Hsu · Davis Railsback · Abraham Flaxman · · Julius Adebayo · Aleksandra Korolova · Jiaming Xu · Naoise Holohan · Samyadeep Basu · Matthew Joseph · My Thai · Xiaoqian Yang · Ellen Vitercik · Michael Hutchinson · Chenghong Wang · Gregory Yauney · Yuchao Tao · Chao Jin · Si Kai Lee · Audra McMillan · Rauf Izmailov · Jiayi Guo · Siddharth Swaroop · Tribhuvanesh Orekondy · Hadi Esmaeilzadeh · Kevin Procopio · Alkis Polyzotis · Jafar Mohammadi · Nitin Agrawal -
2019 : Invited Talk - Marc Deisenroth »
Marc Deisenroth -
2018 : Introduction of the workshop »
Razvan Pascanu · Yee Teh · Mark Ring · Marc Pickett -
2018 Workshop: Continual Learning »
Razvan Pascanu · Yee Teh · Marc Pickett · Mark Ring -
2018 Poster: Gaussian Process Conditional Density Estimation »
Vincent Dutordoir · Hugh Salimbeni · James Hensman · Marc Deisenroth -
2018 Poster: Maximizing acquisition functions for Bayesian optimization »
James Wilson · Frank Hutter · Marc Deisenroth -
2018 Poster: Orthogonally Decoupled Variational Gaussian Processes »
Hugh Salimbeni · Ching-An Cheng · Byron Boots · Marc Deisenroth -
2017 : Poster Session »
Shunsuke Horii · Heejin Jeong · Tobias Schwedes · Qing He · Ben Calderhead · Ertunc Erdil · Jaan Altosaar · Patrick Muchmore · Rajiv Khanna · Ian Gemp · Pengfei Zhang · Yuan Zhou · Chris Cremer · Maria DeYoreo · Alexander Terenin · Brendan McVeigh · Rachit Singh · Yaodong Yang · Erik Bodin · Trefor Evans · Henry Chai · Shandian Zhe · Jeffrey Ling · Vincent ADAM · Lars Maaløe · Andrew Miller · Ari Pakman · Josip Djolonga · Hong Ge -
2017 Poster: Distral: Robust multitask reinforcement learning »
Yee Teh · Victor Bapst · Wojciech Czarnecki · John Quan · James Kirkpatrick · Raia Hadsell · Nicolas Heess · Razvan Pascanu -
2017 Poster: Doubly Stochastic Variational Inference for Deep Gaussian Processes »
Hugh Salimbeni · Marc Deisenroth -
2017 Spotlight: Doubly Stochastic Variational Inference for Deep Gaussian Processes »
Hugh Salimbeni · Marc Deisenroth -
2017 Poster: Identification of Gaussian Process State Space Models »
Stefanos Eleftheriadis · Tom Nicholson · Marc Deisenroth · James Hensman -
2017 Poster: Filtering Variational Objectives »
Chris Maddison · John Lawson · George Tucker · Nicolas Heess · Mohammad Norouzi · Andriy Mnih · Arnaud Doucet · Yee Teh -
2015 : Applications of Bayesian Optimization to Systems »
Marc Deisenroth -
2014 Workshop: Novel Trends and Applications in Reinforcement Learning »
Csaba Szepesvari · Marc Deisenroth · Sergey Levine · Pedro Ortega · Brian Ziebart · Emma Brunskill · Naftali Tishby · Gerhard Neumann · Daniel Lee · Sridhar Mahadevan · Pieter Abbeel · David Silver · Vicenç Gómez -
2013 Workshop: Advances in Machine Learning for Sensorimotor Control »
Thomas Walsh · Alborz Geramifard · Marc Deisenroth · Jonathan How · Jan Peters -
2012 Poster: Expectation Propagation in Gaussian Process Dynamical Systems »
Marc Deisenroth · Shakir Mohamed -
2009 Workshop: Probabilistic Approaches for Control and Robotics »
Marc Deisenroth · Hilbert J Kappen · Emo Todorov · Duy Nguyen-Tuong · Carl Edward Rasmussen · Jan Peters