Timezone: »

 
Poster
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data
Alicia Curth · Changhee Lee · Mihaela van der Schaar

Tue Dec 07 08:30 AM -- 10:00 AM (PST) @

We study the problem of inferring heterogeneous treatment effects from time-to-event data. While both the related problems of (i) estimating treatment effects for binary or continuous outcomes and (ii) predicting survival outcomes have been well studied in the recent machine learning literature, their combination -- albeit of high practical relevance -- has received considerably less attention. With the ultimate goal of reliably estimating the effects of treatments on instantaneous risk and survival probabilities, we focus on the problem of learning (discrete-time) treatment-specific conditional hazard functions. We find that unique challenges arise in this context due to a variety of covariate shift issues that go beyond a mere combination of well-studied confounding and censoring biases. We theoretically analyse their effects by adapting recent generalization bounds from domain adaptation and treatment effect estimation to our setting and discuss implications for model design. We use the resulting insights to propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations. We investigate performance across a range of experimental settings and empirically confirm that our method outperforms baselines by addressing covariate shifts from various sources.

Author Information

Alicia Curth (University of Cambridge)
Changhee Lee (Chung-Ang University)
Mihaela van der Schaar (University of Cambridge)

More from the Same Authors