Timezone: »
Among the many ways of quantifying uncertainty in a regression setting, specifying the full quantile function is attractive, as quantiles are amenable to interpretation and evaluation. A model that predicts the true conditional quantiles for each input, at all quantile levels, presents a correct and efficient representation of the underlying uncertainty. To achieve this, many current quantile-based methods focus on optimizing the pinball loss. However, this loss restricts the scope of applicable regression models, limits the ability to target many desirable properties (e.g. calibration, sharpness, centered intervals), and may produce poor conditional quantiles. In this work, we develop new quantile methods that address these shortcomings. In particular, we propose methods that can apply to any class of regression model, select an explicit balance between calibration and sharpness, optimize for calibration of centered intervals, and produce more accurate conditional quantiles. We provide a thorough experimental evaluation of our methods, which includes a high dimensional uncertainty quantification task in nuclear fusion.
Author Information
Youngseog Chung (Carnegie Mellon University)
Willie Neiswanger (Stanford University)
Ian Char (Carnegie Mellon University)
Jeff Schneider (CMU)
More from the Same Authors
-
2021 : Personalized Benchmarking with the Ludwig Benchmarking Toolkit »
Avanika Narayan · Piero Molino · Karan Goel · Willie Neiswanger · Christopher Ré -
2021 : Synthetic Benchmarks for Scientific Research in Explainable Machine Learning »
Yang Liu · Sujay Khandagale · Colin White · Willie Neiswanger -
2021 : BATS: Best Action Trajectory Stitching »
Ian Char · Viraj Mehta · Adam Villaflor · John Dolan · Jeff Schneider -
2022 : Offline Model-Based Reinforcement Learning for Tokamak Control »
Ian Char · Joseph Abbate · Laszlo Bardoczi · Mark Boyer · Youngseog Chung · Rory Conlin · Keith Erickson · Viraj Mehta · Nathan Richner · Egemen Kolemen · Jeff Schneider -
2022 Poster: Exploration via Planning for Information about the Optimal Trajectory »
Viraj Mehta · Ian Char · Joseph Abbate · Rory Conlin · Mark Boyer · Stefano Ermon · Jeff Schneider · Willie Neiswanger -
2021 : Bayesian Active Reinforcement Learning »
Viraj Mehta · Biswajit Paria · Jeff Schneider · Willie Neiswanger -
2021 : Reinforcement Learning for Autonomous Driving »
Jeff Schneider · Jeff Schneider -
2019 : Coffee + Posters »
Benjamin Caine · Renhao Wang · Nazmus Sakib · Nana Otawara · Meha Kaushik · elmira amirloo · Nemanja Djuric · Johanna Rock · Tanmay Agarwal · Angelos Filos · Panagiotis Tigkas · Donsuk Lee · Wootae Jeon · Nikita Jaipuria · Pin Wang · Jinxin Zhao · Liangjun Zhang · Ashutosh Singh · Ershad Banijamali · Mohsen Rohani · Aman Sinha · Ameya Joshi · Ching-Yao Chan · Mohammed Abdou · Changhao Chen · Jong-Chan Kim · eslam mohamed · Matt OKelly · Nirvan Singhania · Hiroshi Tsukahara · Atsushi Keyaki · Praveen Palanisamy · Justin Norden · Micol Marchetti-Bowick · Yiming Gu · Hitesh Arora · Shubhankar Deshpande · Jeff Schneider · Shangling Jui · Vaneet Aggarwal · Tryambak Gangopadhyay · Qiaojing Yan -
2019 : Morning Coffee Break & Poster Session »
Eric Metodiev · Keming Zhang · Markus Stoye · Randy Churchill · Soumalya Sarkar · Miles Cranmer · Johann Brehmer · Danilo Jimenez Rezende · Peter Harrington · AkshatKumar Nigam · Nils Thuerey · Lukasz Maziarka · Alvaro Sanchez Gonzalez · Atakan Okan · James Ritchie · N. Benjamin Erichson · Harvey Cheng · Peihong Jiang · Seong Ho Pahng · Samson Koelle · Sami Khairy · Adrian Pol · Rushil Anirudh · Jannis Born · Benjamin Sanchez-Lengeling · Brian Timar · Rhys Goodall · Tamás Kriváchy · Lu Lu · Thomas Adler · Nathaniel Trask · Noëlie Cherrier · Tomohiko Konno · Muhammad Kasim · Tobias Golling · Zaccary Alperstein · Andrei Ustyuzhanin · James Stokes · Anna Golubeva · Ian Char · Ksenia Korovina · Youngwoo Cho · Chanchal Chatterjee · Tom Westerhout · Gorka Muñoz-Gil · Juan Zamudio-Fernandez · Jennifer Wei · Brian Lee · Johannes Kofler · Bruce Power · Nikita Kazeev · Andrey Ustyuzhanin · Artem Maevskiy · Pascal Friederich · Arash Tavakoli · Willie Neiswanger · Bohdan Kulchytskyy · sindhu hari · Paul Leu · Paul Atzberger -
2019 Poster: Offline Contextual Bayesian Optimization »
Ian Char · Youngseog Chung · Willie Neiswanger · Kirthevasan Kandasamy · Oak Nelson · Mark Boyer · Egemen Kolemen · Jeff Schneider -
2018 Poster: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing -
2018 Spotlight: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing -
2016 Poster: The Multi-fidelity Multi-armed Bandit »
Kirthevasan Kandasamy · Gautam Dasarathy · Barnabas Poczos · Jeff Schneider -
2016 Poster: Gaussian Process Bandit Optimisation with Multi-fidelity Evaluations »
Kirthevasan Kandasamy · Gautam Dasarathy · Junier B Oliva · Jeff Schneider · Barnabas Poczos -
2015 : Bayesian Optimization and Embedded Learning Systems »
Jeff Schneider -
2014 Poster: Flexible Transfer Learning under Support and Model Shift »
Xuezhi Wang · Jeff Schneider -
2013 Poster: Learning Hidden Markov Models from Non-sequence Data via Tensor Decomposition »
Tzu-Kuo Huang · Jeff Schneider -
2013 Poster: Σ-Optimality for Active Learning on Gaussian Random Fields »
Yifei Ma · Roman Garnett · Jeff Schneider -
2011 Poster: Group Anomaly Detection using Flexible Genre Models »
Liang Xiong · Barnabas Poczos · Jeff Schneider -
2011 Poster: Learning Auto-regressive Models from Sequence and Non-sequence Data »
Tzu-Kuo Huang · Jeff Schneider -
2010 Poster: Learning Multiple Tasks with a Sparse Matrix-Normal Penalty »
Yi Zhang · Jeff Schneider -
2008 Poster: Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text »
Yi Zhang · Jeff Schneider · Artur Dubrawski