Timezone: »
Learning the distribution of future trajectories conditioned on the past is a crucial problem for understanding multi-agent systems. This is challenging because humans make decisions based on complex social relations and personal intents, resulting in highly complex uncertainties over trajectories. To address this problem, we propose a conditional deep generative model that combines advances in graph neural networks. The prior and recognition model encodes two types of latent codes for each agent: an inter-agent latent code to represent social relations and an intra-agent latent code to represent agent intentions. The decoder is carefully devised to leverage the codes in a disentangled way to predict multi-modal future trajectory distribution. Specifically, a graph attention network built upon inter-agent latent code is used to learn continuous pair-wise relations, and an agent's motion is controlled by its latent intents and its observations of all other agents. Through experiments on both synthetic and real-world datasets, we show that our model outperforms previous work in multiple performance metrics. We also show that our model generates realistic multi-modal trajectories.
Author Information
Longyuan Li (Shanghai Jiao Tong University)
Jian Yao (Fudan University)
Li Wenliang (University College London)
Tong He (Amazon Web Services)
Tianjun Xiao (Amazon)
Junchi Yan (Shanghai Jiao Tong University)
David Wipf (Microsoft Research)
Zheng Zhang (Shanghai New York Univeristy)
More from the Same Authors
-
2021 Spotlight: On the Value of Infinite Gradients in Variational Autoencoder Models »
Bin Dai · Li Wenliang · David Wipf -
2022 Poster: Learning Enhanced Representation for Tabular Data via Neighborhood Propagation »
Kounianhua Du · Weinan Zhang · Ruiwen Zhou · Yangkun Wang · Xilong Zhao · Jiarui Jin · Quan Gan · Zheng Zhang · David P Wipf -
2022 Spotlight: Lightning Talks 5B-3 »
Yanze Wu · Jie Xiao · Nianzu Yang · Jieyi Bi · Jian Yao · Yiting Chen · Qizhou Wang · Yangru Huang · Yongqiang Chen · Peixi Peng · Yuxin Hong · Xintao Wang · Feng Liu · Yining Ma · Qibing Ren · Xueyang Fu · Yonggang Zhang · Kaipeng Zeng · Jiahai Wang · GEN LI · Yonggang Zhang · Qitian Wu · Yifan Zhao · Chiyu Wang · Junchi Yan · Feng Wu · Yatao Bian · Xiaosong Jia · Ying Shan · Zhiguang Cao · Zheng-Jun Zha · Guangyao Chen · Tianjun Xiao · Han Yang · Jing Zhang · Jinbiao Chen · MA Kaili · Yonghong Tian · Junchi Yan · Chen Gong · Tong He · Binghui Xie · Yuan Sun · Francesco Locatello · Tongliang Liu · Yeow Meng Chee · David P Wipf · Tongliang Liu · Bo Han · Bo Han · Yanwei Fu · James Cheng · Zheng Zhang -
2022 Spotlight: Self-supervised Amodal Video Object Segmentation »
Jian Yao · Yuxin Hong · Chiyu Wang · Tianjun Xiao · Tong He · Francesco Locatello · David P Wipf · Yanwei Fu · Zheng Zhang -
2022 Poster: Self-supervised Amodal Video Object Segmentation »
Jian Yao · Yuxin Hong · Chiyu Wang · Tianjun Xiao · Tong He · Francesco Locatello · David P Wipf · Yanwei Fu · Zheng Zhang -
2022 Poster: Learning Manifold Dimensions with Conditional Variational Autoencoders »
Yijia Zheng · Tong He · Yixuan Qiu · David P Wipf -
2021 Poster: A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs »
Runzhong Wang · Zhigang Hua · Gan Liu · Jiayi Zhang · Junchi Yan · Feng Qi · Shuang Yang · Jun Zhou · Xiaokang Yang -
2021 Poster: A Biased Graph Neural Network Sampler with Near-Optimal Regret »
Qingru Zhang · David Wipf · Quan Gan · Le Song -
2021 Poster: From Canonical Correlation Analysis to Self-supervised Graph Neural Networks »
Hengrui Zhang · Qitian Wu · Junchi Yan · David Wipf · Philip S Yu -
2021 Poster: Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach »
Qitian Wu · Chenxiao Yang · Junchi Yan -
2021 Poster: Progressive Coordinate Transforms for Monocular 3D Object Detection »
Li Wang · Li Zhang · Yi Zhu · Zhi Zhang · Tong He · Mu Li · Xiangyang Xue -
2021 Poster: Learning High-Precision Bounding Box for Rotated Object Detection via Kullback-Leibler Divergence »
Xue Yang · Xiaojiang Yang · Jirui Yang · Qi Ming · Wentao Wang · Qi Tian · Junchi Yan -
2021 Poster: On Joint Learning for Solving Placement and Routing in Chip Design »
Ruoyu Cheng · Junchi Yan -
2021 Poster: On the Value of Infinite Gradients in Variational Autoencoder Models »
Bin Dai · Li Wenliang · David Wipf -
2019 : Invited Presentation: Deep Graph Library »
Zheng Zhang -
2018 Poster: Loss Functions for Multiset Prediction »
Sean Welleck · Zixin Yao · Yu Gai · Jialin Mao · Zheng Zhang · Kyunghyun Cho -
2017 Oral: From Bayesian Sparsity to Gated Recurrent Nets »
Hao He · Bo Xin · Satoshi Ikehata · David Wipf -
2017 Poster: From Bayesian Sparsity to Gated Recurrent Nets »
Hao He · Bo Xin · Satoshi Ikehata · David Wipf -
2017 Poster: Saliency-based Sequential Image Attention with Multiset Prediction »
Sean Welleck · Jialin Mao · Kyunghyun Cho · Zheng Zhang -
2016 Poster: A Pseudo-Bayesian Algorithm for Robust PCA »
Tae-Hyun Oh · Yasuyuki Matsushita · In So Kweon · David Wipf -
2016 Poster: Maximal Sparsity with Deep Networks? »
Bo Xin · Yizhou Wang · Wen Gao · David Wipf · Baoyuan Wang -
2013 Poster: Non-Uniform Camera Shake Removal Using a Spatially-Adaptive Sparse Penalty »
Haichao Zhang · David Wipf -
2013 Oral: Non-Uniform Camera Shake Removal Using a Spatially-Adaptive Sparse Penalty »
Haichao Zhang · David Wipf