Timezone: »

Wasserstein Flow Meets Replicator Dynamics: A Mean-Field Analysis of Representation Learning in Actor-Critic
Yufeng Zhang · Siyu Chen · Zhuoran Yang · Michael Jordan · Zhaoran Wang

Thu Dec 09 12:30 AM -- 02:00 AM (PST) @ None #None

Actor-critic (AC) algorithms, empowered by neural networks, have had significant empirical success in recent years. However, most of the existing theoretical support for AC algorithms focuses on the case of linear function approximations, or linearized neural networks, where the feature representation is fixed throughout training. Such a limitation fails to capture the key aspect of representation learning in neural AC, which is pivotal in practical problems. In this work, we take a mean-field perspective on the evolution and convergence of feature-based neural AC. Specifically, we consider a version of AC where the actor and critic are represented by overparameterized two-layer neural networks and are updated with two-timescale learning rates. The critic is updated by temporal-difference (TD) learning with a larger stepsize while the actor is updated via proximal policy optimization (PPO) with a smaller stepsize. In the continuous-time and infinite-width limiting regime, when the timescales are properly separated, we prove that neural AC finds the globally optimal policy at a sublinear rate. Additionally, we prove that the feature representation induced by the critic network is allowed to evolve within a neighborhood of the initial one.

Author Information

Yufeng Zhang (Northwestern University)
Siyu Chen (Tsinghua University)
Zhuoran Yang (Princeton)
Michael Jordan (UC Berkeley)
Zhaoran Wang (Princeton University)

More from the Same Authors