`

Timezone: »

 
Poster
Learning Nonparametric Volterra Kernels with Gaussian Processes
Magnus Ross · Michael T Smith · Mauricio Álvarez

Wed Dec 08 12:30 AM -- 02:00 AM (PST) @ None #None

This paper introduces a method for the nonparametric Bayesian learning of nonlinear operators, through the use of the Volterra series with kernels represented using Gaussian processes (GPs), which we term the nonparametric Volterra kernels model (NVKM). When the input function to the operator is unobserved and has a GP prior, the NVKM constitutes a powerful method for both single and multiple output regression, and can be viewed as a nonlinear and nonparametric latent force model. When the input function is observed, the NVKM can be used to perform Bayesian system identification. We use recent advances in efficient sampling of explicit functions from GPs to map process realisations through the Volterra series without resorting to numerical integration, allowing scalability through doubly stochastic variational inference, and avoiding the need for Gaussian approximations of the output processes. We demonstrate the performance of the model for both multiple output regression and system identification using standard benchmarks.

Author Information

Magnus Ross (University of Sheffield)
Michael T Smith (University of Sheffield)

I’m currently a post-doc researcher at the University of Sheffield, in Neil Lawrence’s lab. We’re developing new tools to allow data to be anonymised, through the framework of differential privacy. As part of an innovate UK collaboration we’re building the scikic inference tool, which will provide both a conversation interface and a backend API for inferring demographic and lifestyle features about individuals. It is hoped it will be a useful tool to demonstrate the power of machine learning. In the future we hope to develop a user-centric data model for the analysis and storage of user data, with the motivation that personalised medicine and associated research requires access to user data. I spent most of 2014 lecturing at Makerere University, Kampala, Uganda. There I became involved in the field of Development Informatics, and have several on-going research topics; covering air pollution, nutrition-data, automated microscopy, traffic collision data and malaria distribution prediction. A variety of machine learning methods have been applied (for example Gaussian Process models for the model of malaria distribution). More details about some of these projects can be found at the Artificial Intelligence in the Developing World (AI-DEV) group’s website.

Mauricio Álvarez (University of Sheffield)

More from the Same Authors

  • 2021 Poster: Modular Gaussian Processes for Transfer Learning »
    Pablo Moreno-Muñoz · Antonio Artes · Mauricio Álvarez
  • 2021 Poster: Compositional Modeling of Nonlinear Dynamical Systems with ODE-based Random Features »
    Thomas McDonald · Mauricio Álvarez
  • 2020 Poster: Multi-task Causal Learning with Gaussian Processes »
    Virginia Aglietti · Theodoros Damoulas · Mauricio Álvarez · Javier González
  • 2019 : Break / Poster Session 1 »
    Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang
  • 2019 : Poster session »
    Michael Melese Woldeyohannis · Bernardt Duvenhage · Nyamos Waigama · Asaye Bir Senay · Claire Babirye · Tensaye Ayalew · Kelechi Ogueji · Vinay Prabhu · Prabu Ravindran · Fadilulah Wahab · ChukwuNonso H Nwokoye · Paul Duckworth · Hafte Abera · Abebe Mideksa · Loubna Benabbou · Anugraha Sinha · Ivan Kiskin · Robert Soden · Tupokigwe Isagah · Rehema Mwawado · Yimer Mohammed · Bryan Wilder · Daniel Omeiza · Sunayana Rane · Richard Mgaya · Samsun Knight · Jessenia Gonzalez Villarreal · Eyob Beyene · Monika Obrocka Tulinska · Luis Fernando Cantu Diaz de Leon · Joseph Aro · Michael T Smith · Michael Famoroti · Praneeth Vepakomma · Ramesh Raskar · Debjani Bhowmick · Chukwunonso H Nwokoye · Alejandro Noriega Campero · Hope Mbelwa · Anusua Trivedi
  • 2019 Poster: Multi-task Learning for Aggregated Data using Gaussian Processes »
    Fariba Yousefi · Michael T Smith · Mauricio Álvarez
  • 2018 Poster: Heterogeneous Multi-output Gaussian Process Prediction »
    Pablo Moreno-Muñoz · Antonio Artés · Mauricio Álvarez
  • 2018 Spotlight: Heterogeneous Multi-output Gaussian Process Prediction »
    Pablo Moreno-Muñoz · Antonio Artés · Mauricio Álvarez
  • 2017 : Final remarks »
    Alessandra Tosi · Alfredo Vellido · Mauricio Álvarez
  • 2017 : Opening remarks »
    Alessandra Tosi · Alfredo Vellido · Mauricio Álvarez
  • 2017 Workshop: Transparent and interpretable Machine Learning in Safety Critical Environments »
    Alessandra Tosi · Alfredo Vellido · Mauricio Álvarez
  • 2017 Poster: Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes »
    Zhenwen Dai · Mauricio Álvarez · Neil Lawrence