Timezone: »
Autonomous driving relies on a huge volume of real-world data to be labeled to high precision. Alternative solutions seek to exploit driving simulators that can generate large amounts of labeled data with a plethora of content variations. However, the domain gap between the synthetic and real data remains, raising the following important question: What are the best way to utilize a self-driving simulator for perception tasks?. In this work, we build on top of recent advances in domain-adaptation theory, and from this perspective, propose ways to minimize the reality gap. We primarily focus on the use of labels in the synthetic domain alone. Our approach introduces both a principled way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator. Our method is easy to implement in practice as it is agnostic of the network architecture and the choice of the simulator. We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data (cameras, lidar) using an open-source simulator (CARLA), and evaluate the entire framework on a real-world dataset (nuScenes). Last but not least, we show what types of variations (e.g. weather conditions, number of assets, map design and color diversity) matter to perception networks when trained with driving simulators, and which ones can be compensated for with our domain adaptation technique.
Author Information
David Acuna (University of Toronto, Nvidia, Vector Institute)
Jonah Philion (University of Toronto)
Sanja Fidler (University of Toronto)
More from the Same Authors
-
2022 : How many trained neural networks are needed for influence estimation in modern deep learning? »
Sasha (Alexandre) Doubov · Tianshi Cao · David Acuna · Sanja Fidler -
2021 Poster: Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis »
Tianchang Shen · Jun Gao · Kangxue Yin · Ming-Yu Liu · Sanja Fidler -
2021 Poster: Scalable Neural Data Server: A Data Recommender for Transfer Learning »
Tianshi Cao · Sasha (Alexandre) Doubov · David Acuna · Sanja Fidler -
2021 Poster: DIB-R++: Learning to Predict Lighting and Material with a Hybrid Differentiable Renderer »
Wenzheng Chen · Joey Litalien · Jun Gao · Zian Wang · Clement Fuji Tsang · Sameh Khamis · Or Litany · Sanja Fidler -
2021 Poster: EditGAN: High-Precision Semantic Image Editing »
Huan Ling · Karsten Kreis · Daiqing Li · Seung Wook Kim · Antonio Torralba · Sanja Fidler -
2021 Poster: ATISS: Autoregressive Transformers for Indoor Scene Synthesis »
Despoina Paschalidou · Amlan Kar · Maria Shugrina · Karsten Kreis · Andreas Geiger · Sanja Fidler -
2021 Poster: Don’t Generate Me: Training Differentially Private Generative Models with Sinkhorn Divergence »
Tianshi Cao · Alex Bie · Arash Vahdat · Sanja Fidler · Karsten Kreis -
2020 : Sanja Fidler »
Sanja Fidler -
2020 Poster: Variational Amodal Object Completion »
Huan Ling · David Acuna · Karsten Kreis · Seung Wook Kim · Sanja Fidler -
2020 Poster: Learning Deformable Tetrahedral Meshes for 3D Reconstruction »
Jun Gao · Wenzheng Chen · Tommy Xiang · Alec Jacobson · Morgan McGuire · Sanja Fidler -
2019 : Carl Doersch, Raquel Urtasun, Sanja Fidler moderated by Natalia Neverova »
Raquel Urtasun · Sanja Fidler · Natalia Neverova · Ilija Radosavovic · Carl Doersch -
2019 : Sanja Fidler - TBA »
Sanja Fidler -
2019 : Panel »
Sanja Fidler · Josh Tenenbaum · Tatiana López-Guevara · Danilo Jimenez Rezende · Niloy Mitra -
2019 : Sanja Fidler »
Sanja Fidler -
2019 Poster: Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer »
Wenzheng Chen · Huan Ling · Jun Gao · Edward Smith · Jaakko Lehtinen · Alec Jacobson · Sanja Fidler -
2019 Demonstration: Toronto Annotation Suite »
Amlan Kar · Sanja Fidler · Jun Gao · Seung Wook Kim · Huan Ling -
2018 Poster: A Neural Compositional Paradigm for Image Captioning »
Bo Dai · Sanja Fidler · Dahua Lin -
2017 : Panel Discussion »
Felix Hill · Olivier Pietquin · Jack Gallant · Raymond Mooney · Sanja Fidler · Chen Yu · Devi Parikh -
2017 : Connecting high-level semantics with low-level vision »
Sanja Fidler -
2017 Poster: Teaching Machines to Describe Images with Natural Language Feedback »
Huan Ling · Sanja Fidler -
2016 Poster: Proximal Deep Structured Models »
Shenlong Wang · Sanja Fidler · Raquel Urtasun -
2015 Poster: Skip-Thought Vectors »
Jamie Kiros · Yukun Zhu · Russ Salakhutdinov · Richard Zemel · Raquel Urtasun · Antonio Torralba · Sanja Fidler -
2015 Poster: 3D Object Proposals for Accurate Object Class Detection »
Xiaozhi Chen · Kaustav Kundu · Yukun Zhu · Andrew G Berneshawi · Huimin Ma · Sanja Fidler · Raquel Urtasun -
2012 Poster: 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model »
Sanja Fidler · Sven Dickinson · Raquel Urtasun -
2012 Spotlight: 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model »
Sanja Fidler · Sven Dickinson · Raquel Urtasun -
2009 Poster: Evaluating multi-class learning strategies in a generative hierarchical framework for object detection »
Sanja Fidler · Marko Boben · Ales Leonardis