Timezone: »

 
Poster
Learning with Algorithmic Supervision via Continuous Relaxations
Felix Petersen · Christian Borgelt · Hilde Kuehne · Oliver Deussen

Tue Dec 07 08:30 AM -- 10:00 AM (PST) @

The integration of algorithmic components into neural architectures has gained increased attention recently, as it allows training neural networks with new forms of supervision such as ordering constraints or silhouettes instead of using ground truth labels. Many approaches in the field focus on the continuous relaxation of a specific task and show promising results in this context. But the focus on single tasks also limits the applicability of the proposed concepts to a narrow range of applications. In this work, we build on those ideas to propose an approach that allows to integrate algorithms into end-to-end trainable neural network architectures based on a general approximation of discrete conditions. To this end, we relax these conditions in control structures such as conditional statements, loops, and indexing, so that resulting algorithms are smoothly differentiable. To obtain meaningful gradients, each relevant variable is perturbed via logistic distributions and the expectation value under this perturbation is approximated. We evaluate the proposed continuous relaxation model on four challenging tasks and show that it can keep up with relaxations specifically designed for each individual task.

Author Information

Felix Petersen (University of Konstanz)
Christian Borgelt (Paris-Lodron-University of Salzburg)
Hilde Kuehne (University of Bonn)
Oliver Deussen (University of Konstanz)

More from the Same Authors

  • 2022 Poster: Deep Differentiable Logic Gate Networks »
    Felix Petersen · Christian Borgelt · Hilde Kuehne · Oliver Deussen
  • 2022 Poster: Domain Adaptation meets Individual Fairness. And they get along. »
    Debarghya Mukherjee · Felix Petersen · Mikhail Yurochkin · Yuekai Sun
  • 2021 Poster: Post-processing for Individual Fairness »
    Felix Petersen · Debarghya Mukherjee · Yuekai Sun · Mikhail Yurochkin
  • 2019 : Poster Session »
    Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · SĂ©bastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie
  • 2019 Poster: More Is Less: Learning Efficient Video Representations by Big-Little Network and Depthwise Temporal Aggregation »
    Quanfu Fan · Chun-Fu (Richard) Chen · Hilde Kuehne · Marco Pistoia · David Cox