Timezone: »
We present a novel global compression framework for deep neural networks that automatically analyzes each layer to identify the optimal per-layer compression ratio, while simultaneously achieving the desired overall compression. Our algorithm hinges on the idea of compressing each convolutional (or fully-connected) layer by slicing its channels into multiple groups and decomposing each group via low-rank decomposition. At the core of our algorithm is the derivation of layer-wise error bounds from the Eckart–Young–Mirsky theorem. We then leverage these bounds to frame the compression problem as an optimization problem where we wish to minimize the maximum compression error across layers and propose an efficient algorithm towards a solution. Our experiments indicate that our method outperforms existing low-rank compression approaches across a wide range of networks and data sets. We believe that our results open up new avenues for future research into the global performance-size trade-offs of modern neural networks.
Author Information
Lucas Liebenwein (Massachusetts Institute of Technology)
Alaa Maalouf (The University of Haifa)
Dan Feldman (University of Haifa)
Daniela Rus (Massachusetts Institute of Technology)
More from the Same Authors
-
2021 Spotlight: Coresets for Decision Trees of Signals »
Ibrahim Jubran · Ernesto Evgeniy Sanches Shayda · Ilan I Newman · Dan Feldman -
2021 : Neighborhood Mixup Experience Replay: Local Convex Interpolation for Improved Sample Efficiency in Continuous Control Tasks »
Ryan Sander · Wilko Schwarting · Tim Seyde · Igor Gilitschenski · Sertac Karaman · Daniela Rus -
2021 : Strength Through Diversity: Robust Behavior Learning via Mixture Policies »
Tim Seyde · Wilko Schwarting · Igor Gilitschenski · Markus Wulfmeier · Daniela Rus -
2022 : PyHopper - A Plug-and-Play Hyperparameter Optimization Engine »
Mathias Lechner · Ramin Hasani · Sophie Neubauer · Philipp Neubauer · Daniela Rus -
2022 : Are All Vision Models Created Equal? A Study of the Open-Loop to Closed-Loop Causality Gap »
Mathias Lechner · Ramin Hasani · Alexander Amini · Tsun-Hsuan Johnson Wang · Thomas Henzinger · Daniela Rus -
2022 : Infrastructure-based End-to-End Learning and Prevention of Driver Failure »
Noam Buckman · Shiva Sreeram · Mathias Lechner · Yutong Ban · Ramin Hasani · Sertac Karaman · Daniela Rus -
2022 : Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks »
Sadhana Lolla · Iaroslav Elistratov · Alejandro Perez · Elaheh Ahmadi · Daniela Rus · Alexander Amini -
2022 : Infrastructure-based End-to-End Learning and Prevention of Driver Failure »
Noam Buckman · Shiva Sreeram · Mathias Lechner · Yutong Ban · Ramin Hasani · Sertac Karaman · Daniela Rus -
2022 : Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks »
Sadhana Lolla · Iaroslav Elistratov · Alejandro Perez · Elaheh Ahmadi · Daniela Rus · Alexander Amini -
2022 Poster: Efficient Dataset Distillation using Random Feature Approximation »
Noel Loo · Ramin Hasani · Alexander Amini · Daniela Rus -
2022 Poster: Pruning Neural Networks via Coresets and Convex Geometry: Towards No Assumptions »
Murad Tukan · Loay Mualem · Alaa Maalouf -
2022 Poster: Coreset for Line-Sets Clustering »
Sagi Lotan · Ernesto Evgeniy Sanches Shayda · Dan Feldman -
2022 Poster: Evolution of Neural Tangent Kernels under Benign and Adversarial Training »
Noel Loo · Ramin Hasani · Alexander Amini · Daniela Rus -
2022 Poster: ActionSense: A Multimodal Dataset and Recording Framework for Human Activities Using Wearable Sensors in a Kitchen Environment »
Joseph DelPreto · Chao Liu · Yiyue Luo · Michael Foshey · Yunzhu Li · Antonio Torralba · Wojciech Matusik · Daniela Rus -
2021 Poster: Sparse Flows: Pruning Continuous-depth Models »
Lucas Liebenwein · Ramin Hasani · Alexander Amini · Daniela Rus -
2021 Poster: Causal Navigation by Continuous-time Neural Networks »
Charles Vorbach · Ramin Hasani · Alexander Amini · Mathias Lechner · Daniela Rus -
2021 Poster: Coresets for Decision Trees of Signals »
Ibrahim Jubran · Ernesto Evgeniy Sanches Shayda · Ilan I Newman · Dan Feldman -
2021 Poster: Is Bang-Bang Control All You Need? Solving Continuous Control with Bernoulli Policies »
Tim Seyde · Igor Gilitschenski · Wilko Schwarting · Bartolomeo Stellato · Martin Riedmiller · Markus Wulfmeier · Daniela Rus -
2020 Poster: Deep Evidential Regression »
Alexander Amini · Wilko Schwarting · Ava P Soleimany · Daniela Rus -
2020 Poster: Coresets for Near-Convex Functions »
Murad Tukan · Alaa Maalouf · Dan Feldman -
2019 Poster: Fast and Accurate Least-Mean-Squares Solvers »
Ibrahim Jubran · Alaa Maalouf · Dan Feldman -
2019 Poster: Learning-In-The-Loop Optimization: End-To-End Control And Co-Design Of Soft Robots Through Learned Deep Latent Representations »
Andrew Spielberg · Allan Zhao · Yuanming Hu · Tao Du · Wojciech Matusik · Daniela Rus -
2019 Oral: Fast and Accurate Least-Mean-Squares Solvers »
Ibrahim Jubran · Alaa Maalouf · Dan Feldman -
2019 Poster: k-Means Clustering of Lines for Big Data »
Yair Marom · Dan Feldman -
2016 Poster: Dimensionality Reduction of Massive Sparse Datasets Using Coresets »
Dan Feldman · Mikhail Volkov · Daniela Rus -
2014 Poster: Coresets for k-Segmentation of Streaming Data »
Guy Rosman · Mikhail Volkov · Dan Feldman · John Fisher III · Daniela Rus