Timezone: »
We consider the privacy-preserving machine learning (ML) setting where the trained model must satisfy differential privacy (DP) with respect to the labels of the training examples. We propose two novel approaches based on, respectively, the Laplace mechanism and the PATE framework, and demonstrate their effectiveness on standard benchmarks.While recent work by Ghazi et al. proposed Label DP schemes based on a randomized response mechanism, we argue that additive Laplace noise coupled with Bayesian inference (ALIBI) is a better fit for typical ML tasks. Moreover, we show how to achieve very strong privacy levels in some regimes, with our adaptation of the PATE framework that builds on recent advances in semi-supervised learning.We complement theoretical analysis of our algorithms' privacy guarantees with empirical evaluation of their memorization properties. Our evaluation suggests that comparing different algorithms according to their provable DP guarantees can be misleading and favor a less private algorithm with a tighter analysis.Code for implementation of algorithms and memorization attacks is available from https://github.com/facebookresearch/labeldpantipodes.
Author Information
Mani Malek Esmaeili (Facebook)
Ilya Mironov (Meta (Responsible AI))
Karthik Prasad (Facebook AI)
Igor Shilov (Meta AI)
Florian Tramer (Google)
More from the Same Authors
-
2021 : Label Private Deep Learning Training based on Secure Multiparty Computation and Differential Privacy »
Sen Yuan · Milan Shen · Ilya Mironov · Anderson Nascimento -
2021 : Simple Baselines Are Strong Performers for Differentially Private Natural Language Processing »
Xuechen (Chen) Li · Florian Tramer · Percy Liang · Tatsunori Hashimoto -
2021 : Opacus: User-Friendly Differential Privacy Library in PyTorch »
Ashkan Yousefpour · Igor Shilov · Alexandre Sablayrolles · Karthik Prasad · Mani Malek Esmaeili · John Nguyen · Sayan Ghosh · Akash Bharadwaj · Jessica Zhao · Graham Cormode · Ilya Mironov -
2022 : Reconciling Security and Communication Efficiency in Federated Learning »
Karthik Prasad · Sayan Ghosh · Graham Cormode · Ilya Mironov · Ashkan Yousefpour · Pierre STOCK -
2023 Poster: Students Parrot Their Teachers: Membership Inference on Model Distillation »
Matthew Jagielski · Milad Nasr · Katherine Lee · Christopher Choquette-Choo · Nicholas Carlini · Florian Tramer -
2023 Poster: Are aligned neural networks adversarially aligned? »
Nicholas Carlini · Florian Tramer · Daphne Ippolito · Ludwig Schmidt · Milad Nasr · Matthew Jagielski · Pang Wei Koh · Irena Gao · Christopher Choquette-Choo -
2023 Poster: Counterfactual Memorization in Neural Language Models »
Chiyuan Zhang · Daphne Ippolito · Katherine Lee · Matthew Jagielski · Florian Tramer · Nicholas Carlini -
2023 Oral: Students Parrot Their Teachers: Membership Inference on Model Distillation »
Matthew Jagielski · Milad Nasr · Katherine Lee · Christopher Choquette-Choo · Nicholas Carlini · Florian Tramer -
2022 Poster: Increasing Confidence in Adversarial Robustness Evaluations »
Roland S. Zimmermann · Wieland Brendel · Florian Tramer · Nicholas Carlini -
2022 Poster: The Privacy Onion Effect: Memorization is Relative »
Nicholas Carlini · Matthew Jagielski · Chiyuan Zhang · Nicolas Papernot · Andreas Terzis · Florian Tramer -
2021 : Simple Baselines Are Strong Performers for Differentially Private Natural Language Processing »
Xuechen (Chen) Li · Florian Tramer · Percy Liang · Tatsunori Hashimoto -
2020 Poster: On Adaptive Attacks to Adversarial Example Defenses »
Florian Tramer · Nicholas Carlini · Wieland Brendel · Aleksander Madry -
2019 Poster: Adversarial Training and Robustness for Multiple Perturbations »
Florian Tramer · Dan Boneh -
2019 Spotlight: Adversarial Training and Robustness for Multiple Perturbations »
Florian Tramer · Dan Boneh -
2018 : Contributed talk 6: Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware »
Florian Tramer -
2018 Workshop: Workshop on Security in Machine Learning »
Nicolas Papernot · Jacob Steinhardt · Matt Fredrikson · Kamalika Chaudhuri · Florian Tramer