Timezone: »
Estimating personalized treatment effects from high-dimensional observational data is essential in situations where experimental designs are infeasible, unethical, or expensive. Existing approaches rely on fitting deep models on outcomes observed for treated and control populations. However, when measuring individual outcomes is costly, as is the case of a tumor biopsy, a sample-efficient strategy for acquiring each result is required. Deep Bayesian active learning provides a framework for efficient data acquisition by selecting points with high uncertainty. However, existing methods bias training data acquisition towards regions of non-overlapping support between the treated and control populations. These are not sample-efficient because the treatment effect is not identifiable in such regions. We introduce causal, Bayesian acquisition functions grounded in information theory that bias data acquisition towards regions with overlapping support to maximize sample efficiency for learning personalized treatment effects. We demonstrate the performance of the proposed acquisition strategies on synthetic and semi-synthetic datasets IHDP and CMNIST and their extensions, which aim to simulate common dataset biases and pathologies.
Author Information
Andrew Jesson (University of Oxford)
Panagiotis Tigas (University of Oxford)
Joost van Amersfoort (University of Oxford)
Andreas Kirsch (University of Oxford)
AIMS DPhil at University of Oxford with Prof Yarin Gal at OATML DeepMind: performance research engineer for 1 year Google: software engineer for 3 years MSc CompSci, BSc CompSci, BSc Maths at TU Munich
Uri Shalit (Technion)
Yarin Gal (University of Oxford)

Yarin leads the Oxford Applied and Theoretical Machine Learning (OATML) group. He is an Associate Professor of Machine Learning at the Computer Science department, University of Oxford. He is also the Tutorial Fellow in Computer Science at Christ Church, Oxford, and a Turing Fellow at the Alan Turing Institute, the UK’s national institute for data science and artificial intelligence. Prior to his move to Oxford he was a Research Fellow in Computer Science at St Catharine’s College at the University of Cambridge. He obtained his PhD from the Cambridge machine learning group, working with Prof Zoubin Ghahramani and funded by the Google Europe Doctoral Fellowship. He made substantial contributions to early work in modern Bayesian deep learning—quantifying uncertainty in deep learning—and developed ML/AI tools that can inform their users when the tools are “guessing at random”. These tools have been deployed widely in industry and academia, with the tools used in medical applications, robotics, computer vision, astronomy, in the sciences, and by NASA. Beyond his academic work, Yarin works with industry on deploying robust ML tools safely and responsibly. He co-chairs the NASA FDL AI committee, and is an advisor with Canadian medical imaging company Imagia, Japanese robotics company Preferred Networks, as well as numerous startups.
More from the Same Authors
-
2020 : Spatial Assembly:Generative Architecture With Reinforcement Learning, Self Play and Tree Search »
Panagiotis Tigas -
2020 : Paper 40: Real2sim: Automatic Generation of Open Street Map Towns For Autonomous Driving Benchmarks »
Panagiotis Tigas · Yarin Gal -
2020 Meetup: MeetUp: Oxford, UK »
Yarin Gal -
2021 Spotlight: Speedy Performance Estimation for Neural Architecture Search »
Robin Ru · Clare Lyle · Lisa Schut · Miroslav Fil · Mark van der Wilk · Yarin Gal -
2021 : Shifts: A Dataset of Real Distributional Shift Across Multiple Large-Scale Tasks »
Andrey Malinin · Neil Band · Yarin Gal · Mark Gales · Alexander Ganshin · German Chesnokov · Alexey Noskov · Andrey Ploskonosov · Liudmila Prokhorenkova · Ivan Provilkov · Vatsal Raina · Vyas Raina · Denis Roginskiy · Mariya Shmatova · Panagiotis Tigas · Boris Yangel -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : DeDUCE: Generating Counterfactual Explanations At Scale »
Benedikt Höltgen · Lisa Schut · Jan Brauner · Yarin Gal -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : Covariate Shift of Latent Confounders in Imitation and Reinforcement Learning »
Guy Tennenholtz · Assaf Hallak · Gal Dalal · Shie Mannor · Gal Chechik · Uri Shalit -
2021 : Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in the Southeast Pacific »
Andrew Jesson · Peter Manshausen · Alyson Douglas · Duncan Watson-Parris · Yarin Gal · Philip Stier -
2021 : DARTS without a Validation Set: Optimizing the Marginal Likelihood »
Miroslav Fil · Robin Ru · Clare Lyle · Yarin Gal -
2021 : Using Non-Linear Causal Models to StudyAerosol-Cloud Interactions in the Southeast Pacific »
Andrew Jesson · Peter Manshausen · Alyson Douglas · Duncan Watson-Parris · Yarin Gal · Philip Stier -
2021 : Can Network Flatness Explain the Training Speed-Generalisation Connection? »
Albert Q. Jiang · Clare Lyle · Lisa Schut · Yarin Gal -
2021 : Decomposing Representations for Deterministic Uncertainty Estimation »
Haiwen Huang · Joost van Amersfoort · Yarin Gal -
2021 : On Feature Collapse and Deep Kernel Learning for Single Forward Pass Uncertainty »
Joost van Amersfoort · Lewis Smith · Andrew Jesson · Oscar Key · Yarin Gal -
2021 : Contrastive Representation Learning with Trainable Augmentation Channel »
Masanori Koyama · Kentaro Minami · Takeru Miyato · Yarin Gal -
2021 : Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning »
Zachary Nado · Neil Band · Mark Collier · Josip Djolonga · Mike Dusenberry · Sebastian Farquhar · Qixuan Feng · Angelos Filos · Marton Havasi · Rodolphe Jenatton · Ghassen Jerfel · Jeremiah Liu · Zelda Mariet · Jeremy Nixon · Shreyas Padhy · Jie Ren · Tim G. J. Rudner · Yeming Wen · Florian Wenzel · Kevin Murphy · D. Sculley · Balaji Lakshminarayanan · Jasper Snoek · Yarin Gal · Dustin Tran -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2022 : Discovering Long-period Exoplanets using Deep Learning with Citizen Science Labels »
Shreshth A Malik · Nora Eisner · Chris Lintott · Yarin Gal -
2022 : Modelling non-reinforced preferences using selective attention »
Noor Sajid · Panagiotis Tigas · Zafeirios Fountas · Qinghai Guo · Alexey Zakharov · Lancelot Da Costa -
2022 : Using uncertainty-aware machine learning models to study aerosol-cloud interactions »
Maëlys Solal · Andrew Jesson · Yarin Gal · Alyson Douglas -
2022 : TranceptEVE: Combining Family-specific and Family-agnostic Models of Protein Sequences for Improved Fitness Prediction »
Pascal Notin · Lodevicus van Niekerk · Aaron Kollasch · Daniel Ritter · Yarin Gal · Debora Marks -
2022 : Can Active Sampling Reduce Causal Confusion in Offline Reinforcement Learning? »
Gunshi Gupta · Tim G. J. Rudner · Rowan McAllister · Adrien Gaidon · Yarin Gal -
2022 : Can Active Sampling Reduce Causal Confusion in Offline Reinforcement Learning? »
Gunshi Gupta · Tim G. J. Rudner · Rowan McAllister · Adrien Gaidon · Yarin Gal -
2022 : What 'Out-of-distribution' Is and Is Not »
Sebastian Farquhar · Yarin Gal -
2022 : Semantic Uncertainty: Linguistic Invariances for Uncertainty Estimation in Natural Language Generation »
Lorenz Kuhn · Yarin Gal · Sebastian Farquhar -
2022 : Can Active Sampling Reduce Causal Confusion in Offline Reinforcement Learning? »
Gunshi Gupta · Tim G. J. Rudner · Rowan McAllister · Adrien Gaidon · Yarin Gal -
2023 Poster: ProteinNPT: Improving protein property prediction and design with non-parametric transformers »
Pascal Notin · Ruben Weitzman · Debora Marks · Yarin Gal -
2023 Poster: ProteinGym: Large-Scale Benchmarks for Protein Fitness Prediction and Design »
Pascal Notin · Aaron Kollasch · Daniel Ritter · Lodevicus van Niekerk · Nathan Rollins · Steffan Paul · Ada Shaw · Ruben Weitzman · Jonathan Frazer · Mafalda Dias · Dinko Franceschi · Rose Orenbuch · Han Spinner · Yarin Gal · Debora Marks -
2022 Poster: Tractable Function-Space Variational Inference in Bayesian Neural Networks »
Tim G. J. Rudner · Zonghao Chen · Yee Whye Teh · Yarin Gal -
2022 Poster: Scalable Sensitivity and Uncertainty Analyses for Causal-Effect Estimates of Continuous-Valued Interventions »
Andrew Jesson · Alyson Douglas · Peter Manshausen · Maëlys Solal · Nicolai Meinshausen · Philip Stier · Yarin Gal · Uri Shalit -
2022 Poster: Interventions, Where and How? Experimental Design for Causal Models at Scale »
Panagiotis Tigas · Yashas Annadani · Andrew Jesson · Bernhard Schölkopf · Yarin Gal · Stefan Bauer -
2022 Poster: Active Surrogate Estimators: An Active Learning Approach to Label-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Thomas Rainforth -
2021 : Human-in-the-loop Bayesian Deep Learning »
Yarin Gal -
2021 : [S7] DeDUCE: Generating Counterfactual Explanations At Scale »
Benedikt Höltgen · Lisa Schut · Jan Brauner · Yarin Gal -
2021 Workshop: Bayesian Deep Learning »
Yarin Gal · Yingzhen Li · Sebastian Farquhar · Christos Louizos · Eric Nalisnick · Andrew Gordon Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 Poster: Speedy Performance Estimation for Neural Architecture Search »
Robin Ru · Clare Lyle · Lisa Schut · Miroslav Fil · Mark van der Wilk · Yarin Gal -
2021 : Evaluating Approximate Inference in Bayesian Deep Learning + Q&A »
Andrew Gordon Wilson · Pavel Izmailov · Matthew Hoffman · Yarin Gal · Yingzhen Li · Melanie F. Pradier · Sharad Vikram · Andrew Foong · Sanae Lotfi · Sebastian Farquhar -
2021 Poster: Outcome-Driven Reinforcement Learning via Variational Inference »
Tim G. J. Rudner · Vitchyr Pong · Rowan McAllister · Yarin Gal · Sergey Levine -
2021 Poster: Improving black-box optimization in VAE latent space using decoder uncertainty »
Pascal Notin · José Miguel Hernández-Lobato · Yarin Gal -
2021 Poster: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations »
Tim G. J. Rudner · Cong Lu · Michael A Osborne · Yarin Gal · Yee Teh -
2021 : Shifts Challenge: Robustness and Uncertainty under Real-World Distributional Shift + Q&A »
Andrey Malinin · Neil Band · German Chesnokov · Yarin Gal · Alexander Ganshin · Mark Gales · Alexey Noskov · Liudmila Prokhorenkova · Mariya Shmatova · Vyas Raina · Vatsal Raina · Panagiotis Tigas · Boris Yangel -
2021 Poster: Domain Invariant Representation Learning with Domain Density Transformations »
A. Tuan Nguyen · Toan Tran · Yarin Gal · Atilim Gunes Baydin -
2021 Poster: Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning »
Jannik Kossen · Neil Band · Clare Lyle · Aidan Gomez · Thomas Rainforth · Yarin Gal -
2021 Poster: On Calibration and Out-of-Domain Generalization »
Yoav Wald · Amir Feder · Daniel Greenfeld · Uri Shalit -
2020 Poster: Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior Approximations »
Sebastian Farquhar · Lewis Smith · Yarin Gal -
2020 Poster: A Bayesian Perspective on Training Speed and Model Selection »
Clare Lyle · Lisa Schut · Robin Ru · Yarin Gal · Mark van der Wilk -
2020 Poster: Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models »
Andrew Jesson · Sören Mindermann · Uri Shalit · Yarin Gal -
2020 Poster: How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19? »
Mrinank Sharma · Sören Mindermann · Jan Brauner · Gavin Leech · Anna Stephenson · Tomáš Gavenčiak · Jan Kulveit · Yee Whye Teh · Leonid Chindelevitch · Yarin Gal -
2020 Spotlight: How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19? »
Mrinank Sharma · Sören Mindermann · Jan Brauner · Gavin Leech · Anna Stephenson · Tomáš Gavenčiak · Jan Kulveit · Yee Whye Teh · Leonid Chindelevitch · Yarin Gal -
2019 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Eric Nalisnick · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2019 Poster: BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning »
Andreas Kirsch · Joost van Amersfoort · Yarin Gal -
2018 : TBC 15 »
Yarin Gal -
2018 : Invited Speaker #5 Yarin Gal »
Yarin Gal -
2018 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2018 : Opening Remarks »
Yarin Gal -
2018 Poster: BRUNO: A Deep Recurrent Model for Exchangeable Data »
Iryna Korshunova · Jonas Degrave · Ferenc Huszar · Yarin Gal · Arthur Gretton · Joni Dambre -
2017 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Andrew Wilson · Diederik Kingma · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka -
2017 Poster: Concrete Dropout »
Yarin Gal · Jiri Hron · Alex Kendall -
2017 Poster: Causal Effect Inference with Deep Latent-Variable Models »
Christos Louizos · Uri Shalit · Joris Mooij · David Sontag · Richard Zemel · Max Welling -
2017 Poster: What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? »
Alex Kendall · Yarin Gal -
2017 Spotlight: What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? »
Alex Kendall · Yarin Gal -
2017 Poster: Real Time Image Saliency for Black Box Classifiers »
Piotr Dabkowski · Yarin Gal -
2016 : Panel Discussion »
Shakir Mohamed · David Blei · Ryan Adams · José Miguel Hernández-Lobato · Ian Goodfellow · Yarin Gal -
2016 Workshop: Bayesian Deep Learning »
Yarin Gal · Christos Louizos · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2016 Workshop: Machine Learning for Health »
Uri Shalit · Marzyeh Ghassemi · Jason Fries · Rajesh Ranganath · Theofanis Karaletsos · David Kale · Peter Schulam · Madalina Fiterau -
2016 Poster: A Theoretically Grounded Application of Dropout in Recurrent Neural Networks »
Yarin Gal · Zoubin Ghahramani -
2014 Poster: Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models »
Yarin Gal · Mark van der Wilk · Carl Edward Rasmussen -
2010 Spotlight: Online Learning in The Manifold of Low-Rank Matrices »
Uri Shalit · Daphna Weinshall · Gal Chechik -
2010 Poster: Online Learning in The Manifold of Low-Rank Matrices »
Uri Shalit · Daphna Weinshall · Gal Chechik -
2009 Poster: An Online Algorithm for Large Scale Image Similarity Learning »
Gal Chechik · Uri Shalit · Varun Sharma · Samy Bengio