Timezone: »
Recent blind super-resolution (SR) methods typically consist of two branches, one for degradation prediction and the other for conditional restoration. However, our experiments show that a one-branch network can achieve comparable performance to the two-branch scheme. Then we wonder: how can one-branch networks automatically learn to distinguish degradations? To find the answer, we propose a new diagnostic tool -- Filter Attribution method based on Integral Gradient (FAIG). Unlike previous integral gradient methods, our FAIG aims at finding the most discriminative filters instead of input pixels/features for degradation removal in blind SR networks. With the discovered filters, we further develop a simple yet effective method to predict the degradation of an input image. Based on FAIG, we show that, in one-branch blind SR networks, 1) we could find a very small number of (1%) discriminative filters for each specific degradation; 2) The weights, locations and connections of the discovered filters are all important to determine the specific network function. 3) The task of degradation prediction can be implicitly realized by these discriminative filters without explicit supervised learning. Our findings can not only help us better understand network behaviors inside one-branch blind SR networks, but also provide guidance on designing more efficient architectures and diagnosing networks for blind SR.
Author Information
Liangbin Xie (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Chinese Academy of Sciences)
Xintao Wang (Applied Research Center, Tencent PCG)
Chao Dong (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Chinese Academy of Sciences)
Zhongang Qi (Oregon State University)
Ying Shan (Tencent)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Finding Discriminative Filters for Specific Degradations in Blind Super-Resolution »
Wed. Dec 8th 08:30 -- 10:00 AM Room
More from the Same Authors
-
2022 Poster: AnimeSR: Learning Real-World Super-Resolution Models for Animation Videos »
Yanze Wu · Xintao Wang · GEN LI · Ying Shan -
2022 Poster: Rethinking Alignment in Video Super-Resolution Transformers »
Shuwei Shi · Jinjin Gu · Liangbin Xie · Xintao Wang · Yujiu Yang · Chao Dong -
2022 Spotlight: Lightning Talks 5B-3 »
Yanze Wu · Jie Xiao · Nianzu Yang · Jieyi Bi · Jian Yao · Yiting Chen · Qizhou Wang · Yangru Huang · Yongqiang Chen · Peixi Peng · Yuxin Hong · Xintao Wang · Feng Liu · Yining Ma · Qibing Ren · Xueyang Fu · Yonggang Zhang · Kaipeng Zeng · Jiahai Wang · GEN LI · Yonggang Zhang · Qitian Wu · Yifan Zhao · Chiyu Wang · Junchi Yan · Feng Wu · Yatao Bian · Xiaosong Jia · Ying Shan · Zhiguang Cao · Zheng-Jun Zha · Guangyao Chen · Tianjun Xiao · Han Yang · Jing Zhang · Jinbiao Chen · MA Kaili · Yonghong Tian · Junchi Yan · Chen Gong · Tong He · Binghui Xie · Yuan Sun · Francesco Locatello · Tongliang Liu · Yeow Meng Chee · David P Wipf · Tongliang Liu · Bo Han · Bo Han · Yanwei Fu · James Cheng · Zheng Zhang -
2022 Spotlight: AnimeSR: Learning Real-World Super-Resolution Models for Animation Videos »
Yanze Wu · Xintao Wang · GEN LI · Ying Shan -
2022 Poster: DeVRF: Fast Deformable Voxel Radiance Fields for Dynamic Scenes »
Jia-Wei Liu · Yan-Pei Cao · Weijia Mao · Wenqiao Zhang · David Junhao Zhang · Jussi Keppo · Ying Shan · Xiaohu Qie · Mike Zheng Shou -
2022 Poster: AnimeRun: 2D Animation Visual Correspondence from Open Source 3D Movies »
Li Siyao · Yuhang Li · Bo Li · Chao Dong · Ziwei Liu · Chen Change Loy -
2020 Poster: Detecting Interactions from Neural Networks via Topological Analysis »
Zirui Liu · Qingquan Song · Kaixiong Zhou · Ting-Hsiang Wang · Ying Shan · Xia Hu -
2017 : Posters 1 »
J.P. Lewis · Housam Khalifa Bashier Babiker · Zhongang Qi · Laura Rieger · Ning Xie · Filip Dabek · Koushik Nagasubramanian · Bolei Zhou · Dieuwke Hupkes · CHUN-HAO CHANG · Pamela K Douglas · Enea Ceolini · Derek Doran · Yan Liu · Fuxin Li · Randolph Goebel