Timezone: »
Poster
Data-Efficient Instance Generation from Instance Discrimination
Ceyuan Yang · Yujun Shen · Yinghao Xu · Bolei Zhou
Generative Adversarial Networks (GANs) have significantly advanced image synthesis, however, the synthesis quality drops significantly given a limited amount of training data. To improve the data efficiency of GAN training, prior work typically employs data augmentation to mitigate the overfitting of the discriminator yet still learn the discriminator with a bi-classification ($\textit{i.e.}$, real $\textit{vs.}$ fake) task. In this work, we propose a data-efficient Instance Generation ($\textit{InsGen}$) method based on instance discrimination. Concretely, besides differentiating the real domain from the fake domain, the discriminator is required to distinguish every individual image, no matter it comes from the training set or from the generator. In this way, the discriminator can benefit from the infinite synthesized samples for training, alleviating the overfitting problem caused by insufficient training data. A noise perturbation strategy is further introduced to improve its discriminative power. Meanwhile, the learned instance discrimination capability from the discriminator is in turn exploited to encourage the generator for diverse generation. Extensive experiments demonstrate the effectiveness of our method on a variety of datasets and training settings. Noticeably, on the setting of $2K$ training images from the FFHQ dataset, we outperform the state-of-the-art approach with 23.5\% FID improvement.
Author Information
Ceyuan Yang (The Chinese University of Hong Kong)
Yujun Shen (ByteDance Inc.)
Yinghao Xu (Chinese University of Hong Kong)
Bolei Zhou (Massachusetts Institute of Technology)
More from the Same Authors
-
2022 Spotlight: Improving 3D-aware Image Synthesis with A Geometry-aware Discriminator »
Zifan Shi · Yinghao Xu · Yujun Shen · Deli Zhao · Qifeng Chen · Dit-Yan Yeung -
2022 Spotlight: Lightning Talks 5B-1 »
Devansh Arpit · Xiaojun Xu · Zifan Shi · Ivan Skorokhodov · Shayan Shekarforoush · Zhan Tong · Yiqun Wang · Shichong Peng · Linyi Li · Ivan Skorokhodov · Huan Wang · Yibing Song · David Lindell · Yinghao Xu · Seyed Alireza Moazenipourasil · Sergey Tulyakov · Peter Wonka · Yiqun Wang · Ke Li · David Fleet · Yujun Shen · Yingbo Zhou · Bo Li · Jue Wang · Peter Wonka · Marcus Brubaker · Caiming Xiong · Limin Wang · Deli Zhao · Qifeng Chen · Dit-Yan Yeung -
2022 Poster: Improving 3D-aware Image Synthesis with A Geometry-aware Discriminator »
Zifan Shi · Yinghao Xu · Yujun Shen · Deli Zhao · Qifeng Chen · Dit-Yan Yeung -
2022 Poster: Improving GANs with A Dynamic Discriminator »
Ceyuan Yang · Yujun Shen · Yinghao Xu · Deli Zhao · Bo Dai · Bolei Zhou -
2021 Poster: Low-Rank Subspaces in GANs »
Jiapeng Zhu · Ruili Feng · Yujun Shen · Deli Zhao · Zheng-Jun Zha · Jingren Zhou · Qifeng Chen -
2021 Poster: Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization »
Zhenghao Peng · Quanyi Li · Ka Ming Hui · Chunxiao Liu · Bolei Zhou -
2017 : Posters 1 »
J.P. Lewis · Housam Khalifa Bashier Babiker · Zhongang Qi · Laura Rieger · Ning Xie · Filip Dabek · Koushik Nagasubramanian · Bolei Zhou · Dieuwke Hupkes · CHUN-HAO CHANG · Pamela K Douglas · Enea Ceolini · Derek Doran · Yan Liu · Fuxin Li · Randolph Goebel -
2017 : Panel discussion with Hanna Wallach, Kiri Wagstaff, Suchi Saria, Bolei Zhou, and Zack Lipton. Moderated by Rich Caruana. »
Bolei Zhou -
2014 Poster: Learning Deep Features for Scene Recognition using Places Database »
Bolei Zhou · Agata Lapedriza · Jianxiong Xiao · Antonio Torralba · Aude Oliva -
2014 Spotlight: Learning Deep Features for Scene Recognition using Places Database »
Bolei Zhou · Agata Lapedriza · Jianxiong Xiao · Antonio Torralba · Aude Oliva