Timezone: »
Most data is automatically collected and only ever "seen" by algorithms. Yet, data compressors preserve perceptual fidelity rather than just the information needed by algorithms performing downstream tasks. In this paper, we characterize the bit-rate required to ensure high performance on all predictive tasks that are invariant under a set of transformations, such as data augmentations. Based on our theory, we design unsupervised objectives for training neural compressors. Using these objectives, we train a generic image compressor that achieves substantial rate savings (more than 1000x on ImageNet) compared to JPEG on 8 datasets, without decreasing downstream classification performance.
Author Information
Yann Dubois (Stanford University)
Benjamin Bloem-Reddy (University of British Columbia)
Karen Ullrich (Facebook AI Research)
Research scientist (s/h) at FAIR NY + collab. w/ Vector Institute. ❤️ Deep Learning + Information Theory. Previously, Machine Learning PhD at UoAmsterdam.
Chris Maddison (University of Toronto)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Lossy Compression for Lossless Prediction »
Dates n/a. Room
More from the Same Authors
-
2021 Spotlight: Learning Generalized Gumbel-max Causal Mechanisms »
Guy Lorberbom · Daniel D. Johnson · Chris Maddison · Daniel Tarlow · Tamir Hazan -
2021 : Optimal Representations for Covariate Shifts »
Yann Dubois · Yangjun Ruan · Chris Maddison -
2021 : Multiple Environments Can Reduce Indeterminacy in VAEs »
Quanhan (Johnny) Xi · Benjamin Bloem-Reddy -
2021 : Your Dataset is a Multiset and You Should Compress it Like One »
Daniel Severo · James Townsend · Ashish Khisti · Alireza Makhzani · Karen Ullrich -
2023 Poster: Probabilistic Invariant Learning with Randomized Linear Classifiers »
Leonardo Cotta · Gal Yehuda · Assaf Schuster · Chris Maddison -
2023 Poster: Shaped Attention Mechanism in the Infinite Depth-and-Width Limit at Initialization »
Lorenzo Noci · Chuning Li · Mufan Li · Bobby He · Thomas Hofmann · Chris Maddison · Dan Roy -
2023 Poster: MeGraph: Capturing Long-Range Interactions by Alternating Local and Hierarchical Aggregation on Multi-Scaled Graph Hierarchy »
Honghua Dong · Jiawei Xu · Yu Yang · Rui Zhao · Shiwen Wu · Chun Yuan · Xiu Li · Chris Maddison · Lei Han -
2023 Poster: AlpacaFarm: A Simulation Framework for Methods that Learn from Human Feedback »
Yann Dubois · Xuechen Li · Rohan Taori · Tianyi Zhang · Ishaan Gulrajani · Jimmy Ba · Carlos Guestrin · Percy Liang · Tatsunori Hashimoto -
2022 Poster: Improving Self-Supervised Learning by Characterizing Idealized Representations »
Yann Dubois · Stefano Ermon · Tatsunori Hashimoto · Percy Liang -
2021 : Your Dataset is a Multiset and You Should Compress it Like One »
Daniel Severo · James Townsend · Ashish Khisti · Alireza Makhzani · Karen Ullrich -
2021 : Contributed Talk 4 »
Benjamin Bloem-Reddy -
2021 : Invited Talk 6 »
Chris Maddison -
2021 Poster: Learning Generalized Gumbel-max Causal Mechanisms »
Guy Lorberbom · Daniel D. Johnson · Chris Maddison · Daniel Tarlow · Tamir Hazan -
2020 Poster: Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes »
Andrew Foong · Wessel Bruinsma · Jonathan Gordon · Yann Dubois · James Requeima · Richard Turner -
2020 Poster: Gradient Estimation with Stochastic Softmax Tricks »
Max Paulus · Dami Choi · Danny Tarlow · Andreas Krause · Chris Maddison -
2020 Oral: Gradient Estimation with Stochastic Softmax Tricks »
Max Paulus · Dami Choi · Danny Tarlow · Andreas Krause · Chris Maddison -
2020 Poster: Learning Optimal Representations with the Decodable Information Bottleneck »
Yann Dubois · Douwe Kiela · David Schwab · Ramakrishna Vedantam -
2020 Poster: Direct Policy Gradients: Direct Optimization of Policies in Discrete Action Spaces »
Guy Lorberbom · Chris Maddison · Nicolas Heess · Tamir Hazan · Danny Tarlow -
2020 Spotlight: Learning Optimal Representations with the Decodable Information Bottleneck »
Yann Dubois · Douwe Kiela · David Schwab · Ramakrishna Vedantam -
2019 Poster: Hamiltonian descent for composite objectives »
Brendan O'Donoghue · Chris Maddison -
2019 Poster: Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders »
Emile Mathieu · Charline Le Lan · Chris Maddison · Ryota Tomioka · Yee Whye Teh -
2018 : Invited Talk 2 »
Benjamin Bloem-Reddy -
2018 Workshop: Critiquing and Correcting Trends in Machine Learning »
Thomas Rainforth · Matt Kusner · Benjamin Bloem-Reddy · Brooks Paige · Rich Caruana · Yee Whye Teh -
2017 Poster: REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models »
George Tucker · Andriy Mnih · Chris J Maddison · John Lawson · Jascha Sohl-Dickstein -
2017 Oral: REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models »
George Tucker · Andriy Mnih · Chris J Maddison · John Lawson · Jascha Sohl-Dickstein -
2017 Poster: Filtering Variational Objectives »
Chris Maddison · John Lawson · George Tucker · Nicolas Heess · Mohammad Norouzi · Andriy Mnih · Arnaud Doucet · Yee Teh -
2017 Poster: Bayesian Compression for Deep Learning »
Christos Louizos · Karen Ullrich · Max Welling -
2014 Poster: A* Sampling »
Chris Maddison · Danny Tarlow · Tom Minka -
2014 Oral: A* Sampling »
Chris Maddison · Danny Tarlow · Tom Minka -
2013 Poster: Annealing between distributions by averaging moments »
Roger Grosse · Chris Maddison · Russ Salakhutdinov -
2013 Oral: Annealing between distributions by averaging moments »
Roger Grosse · Chris Maddison · Russ Salakhutdinov