Timezone: »
Poster
Equivariant Manifold Flows
Isay Katsman · Aaron Lou · Derek Lim · Qingxuan Jiang · Ser Nam Lim · Christopher De Sa
Tractably modelling distributions over manifolds has long been an important goal in the natural sciences. Recent work has focused on developing general machine learning models to learn such distributions. However, for many applications these distributions must respect manifold symmetries—a trait which most previous models disregard. In this paper, we lay the theoretical foundations for learning symmetry-invariant distributions on arbitrary manifolds via equivariant manifold flows. We demonstrate the utility of our approach by learning quantum field theory-motivated invariant SU(n) densities and by correcting meteor impact dataset bias.
Author Information
Isay Katsman (Cornell University)
Aaron Lou (Cornell University)
Derek Lim (Massachusetts Institute of Technology)
Qingxuan Jiang (Massachusetts Institute of Technology)
Ser Nam Lim (Facebook AI)
Christopher De Sa (Cornell)
More from the Same Authors
-
2021 : Mix-MaxEnt: Improving Accuracy and Uncertainty Estimates of Deterministic Neural Networks »
Francesco Pinto · Harry Yang · Ser Nam Lim · Philip Torr · Puneet Dokania -
2022 Poster: Using Mixup as a Regularizer Can Surprisingly Improve Accuracy & Out-of-Distribution Robustness »
Francesco Pinto · Harry Yang · Ser Nam Lim · Philip Torr · Puneet Dokania -
2022 Poster: Spartan: Differentiable Sparsity via Regularized Transportation »
Kai Sheng Tai · Taipeng Tian · Ser Nam Lim -
2022 Poster: FedSR: A Simple and Effective Domain Generalization Method for Federated Learning »
A. Tuan Nguyen · Philip Torr · Ser Nam Lim -
2022 Poster: GAPX: Generalized Autoregressive Paraphrase-Identification X »
Yifei Zhou · Renyu Li · Hayden Housen · Ser Nam Lim -
2022 Poster: Few-Shot Fast-Adaptive Anomaly Detection »
Ze Wang · Yipin Zhou · Rui Wang · Tsung-Yu Lin · Ashish Shah · Ser Nam Lim -
2022 Poster: HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions »
Yongming Rao · Wenliang Zhao · Yansong Tang · Jie Zhou · Ser Nam Lim · Jiwen Lu -
2021 Poster: Learning to Ground Multi-Agent Communication with Autoencoders »
Toru Lin · Jacob Huh · Christopher Stauffer · Ser Nam Lim · Phillip Isola -
2021 Poster: Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods »
Derek Lim · Felix Hohne · Xiuyu Li · Sijia Linda Huang · Vaishnavi Gupta · Omkar Bhalerao · Ser Nam Lim -
2021 Poster: Representing Hyperbolic Space Accurately using Multi-Component Floats »
Tao Yu · Christopher De Sa -
2021 Poster: NeRV: Neural Representations for Videos »
Hao Chen · Bo He · Hanyu Wang · Yixuan Ren · Ser Nam Lim · Abhinav Shrivastava -
2021 Poster: Hyperparameter Optimization Is Deceiving Us, and How to Stop It »
A. Feder Cooper · Yucheng Lu · Jessica Forde · Christopher De Sa -
2021 Poster: Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks »
Tolga Birdal · Aaron Lou · Leonidas Guibas · Umut Simsekli -
2021 Poster: A Continuous Mapping For Augmentation Design »
Keyu Tian · Chen Lin · Ser Nam Lim · Wanli Ouyang · Puneet Dokania · Philip Torr -
2020 : Deep Riemannian Manifold Learning »
Aaron Lou · Maximilian Nickel · Brandon Amos -
2020 Workshop: Differential Geometry meets Deep Learning (DiffGeo4DL) »
Joey Bose · Emile Mathieu · Charline Le Lan · Ines Chami · Frederic Sala · Christopher De Sa · Maximilian Nickel · Christopher RĂ© · Will Hamilton -
2020 Poster: Better Set Representations For Relational Reasoning »
Qian Huang · Horace He · Abhay Singh · Yan Zhang · Ser Nam Lim · Austin Benson -
2020 Poster: Random Reshuffling is Not Always Better »
Christopher De Sa -
2020 Poster: Asymptotically Optimal Exact Minibatch Metropolis-Hastings »
Ruqi Zhang · A. Feder Cooper · Christopher De Sa -
2020 Spotlight: Asymptotically Optimal Exact Minibatch Metropolis-Hastings »
Ruqi Zhang · A. Feder Cooper · Christopher De Sa -
2020 Spotlight: Random Reshuffling is Not Always Better »
Christopher De Sa -
2020 Poster: Neural Manifold Ordinary Differential Equations »
Aaron Lou · Derek Lim · Isay Katsman · Leo Huang · Qingxuan Jiang · Ser Nam Lim · Christopher De Sa -
2019 Poster: Numerically Accurate Hyperbolic Embeddings Using Tiling-Based Models »
Tao Yu · Christopher De Sa -
2019 Spotlight: Numerically Accurate Hyperbolic Embeddings Using Tiling-Based Models »
Tao Yu · Christopher De Sa -
2019 Poster: Dimension-Free Bounds for Low-Precision Training »
Zheng Li · Christopher De Sa -
2019 Poster: Poisson-Minibatching for Gibbs Sampling with Convergence Rate Guarantees »
Ruqi Zhang · Christopher De Sa -
2019 Spotlight: Poisson-Minibatching for Gibbs Sampling with Convergence Rate Guarantees »
Ruqi Zhang · Christopher De Sa -
2019 Poster: Channel Gating Neural Networks »
Weizhe Hua · Yuan Zhou · Christopher De Sa · Zhiru Zhang · G. Edward Suh