Timezone: »
Deep convolutional neural networks (CNNs) for image denoising are typically trained on large datasets. These models achieve the current state of the art, but they do not generalize well to data that deviate from the training distribution. Recent work has shown that it is possible to train denoisers on a single noisy image. These models adapt to the features of the test image, but their performance is limited by the small amount of information used to train them. Here we propose "GainTuning'', a methodology by which CNN models pre-trained on large datasets can be adaptively and selectively adjusted for individual test images. To avoid overfitting, GainTuning optimizes a single multiplicative scaling parameter (the “Gain”) of each channel in the convolutional layers of the CNN. We show that GainTuning improves state-of-the-art CNNs on standard image-denoising benchmarks, boosting their denoising performance on nearly every image in a held-out test set. These adaptive improvements are even more substantial for test images differing systematically from the training data, either in noise level or image type. We illustrate the potential of adaptive GainTuning in a scientific application to transmission-electron-microscope images, using a CNN that is pre-trained on synthetic data. In contrast to the existing methodology, GainTuning is able to faithfully reconstruct the structure of catalytic nanoparticles from these data at extremely low signal-to-noise ratios.
Author Information
Sreyas Mohan (NYU)
Joshua L Vincent (Arizona State University)
Ramon Manzorro (Universidad de Zaragoza)
Peter Crozier (Arizona State University)
Carlos Fernandez-Granda (NYU)
Eero Simoncelli (FlatIron Institute / New York University)
Eero P. Simoncelli received the B.S. degree in Physics in 1984 from Harvard University, studied applied mathematics at Cambridge University for a year and a half, and then received the M.S. degree in 1988 and the Ph.D. degree in 1993, both in Electrical Engineering from the Massachusetts Institute of Technology. He was an Assistant Professor in the Computer and Information Science department at the University of Pennsylvania from 1993 until 1996. He moved to New York University in September of 1996, where he is currently a Professor in Neural Science, Mathematics, and Psychology. In August 2000, he became an Associate Investigator of the Howard Hughes Medical Institute, under their new program in Computational Biology. In Fall 2020, he resigned his HHMI appointment to become the scientific director of the Center for Computational Neuroscience at the Flatiron Institute, of the Simons Foundation. His research interests span a wide range of topics in the representation and analysis of visual images, in both machine and biological systems.
More from the Same Authors
-
2021 Poster: Convolutional Normalization: Improving Deep Convolutional Network Robustness and Training »
Sheng Liu · Xiao Li · Yuexiang Zhai · Chong You · Zhihui Zhu · Carlos Fernandez-Granda · Qing Qu -
2021 Poster: Stochastic Solutions for Linear Inverse Problems using the Prior Implicit in a Denoiser »
Zahra Kadkhodaie · Eero Simoncelli -
2021 Poster: Impression learning: Online representation learning with synaptic plasticity »
Colin Bredenberg · Benjamin Lyo · Eero Simoncelli · Cristina Savin -
2020 Poster: Learning efficient task-dependent representations with synaptic plasticity »
Colin Bredenberg · Eero Simoncelli · Cristina Savin -
2020 Poster: Early-Learning Regularization Prevents Memorization of Noisy Labels »
Sheng Liu · Jonathan Niles-Weed · Narges Razavian · Carlos Fernandez-Granda -
2019 : Local gain control and perceptual invariances »
Eero Simoncelli -
2019 : Poster Session »
Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Samuel Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie -
2019 Poster: Flexible information routing in neural populations through stochastic comodulation »
Caroline Haimerl · Cristina Savin · Eero Simoncelli -
2019 Poster: Data-driven Estimation of Sinusoid Frequencies »
Gautier Izacard · Sreyas Mohan · Carlos Fernandez-Granda -
2017 Poster: Eigen-Distortions of Hierarchical Representations »
Alexander Berardino · Valero Laparra · Johannes Ballé · Eero Simoncelli -
2017 Oral: Eigen-Distortions of Hierarchical Representations »
Alexander Berardino · Valero Laparra · Johannes Ballé · Eero Simoncelli -
2012 Poster: Efficient and direct estimation of a neural subunit model for sensory coding »
Brett Vintch · Andrew Zaharia · J Movshon · Eero Simoncelli -
2012 Poster: Hierarchical spike coding of sound »
yan karklin · Chaitanya Ekanadham · Eero Simoncelli -
2012 Spotlight: Hierarchical spike coding of sound »
yan karklin · Chaitanya Ekanadham · Eero Simoncelli -
2011 Poster: Efficient coding with a population of Linear-Nonlinear neurons »
yan karklin · Eero Simoncelli -
2011 Poster: A blind sparse deconvolution method for neural spike identification »
Chaitanya Ekanadham · Daniel Tranchina · Eero Simoncelli -
2011 Spotlight: A blind sparse deconvolution method for neural spike identification »
Chaitanya Ekanadham · Daniel Tranchina · Eero Simoncelli -
2010 Poster: Implicit encoding of prior probabilities in optimal neural populations »
Deep Ganguli · Eero Simoncelli -
2009 Poster: Hierarchical Modeling of Local Image Features through $L_p$-Nested Symmetric Distributions »
Fabian H Sinz · Eero Simoncelli · Matthias Bethge -
2008 Oral: Reducing statistical dependencies in natural signals using radial Gaussianization »
Siwei Lyu · Eero Simoncelli -
2008 Poster: Reducing statistical dependencies in natural signals using radial Gaussianization »
Siwei Lyu · Eero Simoncelli -
2008 Tutorial: Statistical Models of Visual Images »
Eero Simoncelli -
2007 Poster: A Bayesian Model of Conditioned Perception »
Alan A Stocker · Eero Simoncelli -
2006 Poster: Statistical Modeling of Images with Fields of Gaussian Scale Mixtures »
Siwei Lyu · Eero Simoncelli -
2006 Poster: Learning to be Bayesian without Supervision »
Martin Raphan · Eero Simoncelli