Timezone: »
Transformers have achieved success in both language and vision domains. However, it is prohibitively expensive to scale them to long sequences such as long documents or high-resolution images, because self-attention mechanism has quadratic time and memory complexities with respect to the input sequence length. In this paper, we propose Long-Short Transformer (Transformer-LS), an efficient self-attention mechanism for modeling long sequences with linear complexity for both language and vision tasks. It aggregates a novel long-range attention with dynamic projection to model distant correlations and a short-term attention to capture fine-grained local correlations. We propose a dual normalization strategy to account for the scale mismatch between the two attention mechanisms. Transformer-LS can be applied to both autoregressive and bidirectional models without additional complexity. Our method outperforms the state-of-the-art models on multiple tasks in language and vision domains, including the Long Range Arena benchmark, autoregressive language modeling, and ImageNet classification. For instance, Transformer-LS achieves 0.97 test BPC on enwik8 using half the number of parameters than previous method, while being faster and is able to handle 3x as long sequences compared to its full-attention version on the same hardware. On ImageNet, it can obtain the state-of-the-art results (e.g., a moderate size of 55.8M model solely trained on 224x224 ImageNet-1K can obtain Top-1 accuracy 84.1%), while being more scalable on high-resolution images. The source code and models are released at https://github.com/NVIDIA/transformer-ls.
Author Information
Chen Zhu (University of Maryland, College Park)
Wei Ping (Baidu Research)
Chaowei Xiao (University of Michigan, Ann Arbor)
I am Chaowei Xiao, a third year PhD student in CSE Department, University of Michigan, Ann Arbor. My advisor is Professor Mingyan Liu . I obtained my bachelor's degree in School of Software from Tsinghua University in 2015, advised by Professor Yunhao Liu, Professor Zheng Yang and Dr. Lei Yang. I was also a visiting student at UC Berkeley in 2018, advised by Professor Dawn Song and Professor Bo Li. My research interest includes adversarial machine learning.
Mohammad Shoeybi (NVIDIA)
Tom Goldstein (Rice University)
Anima Anandkumar (NVIDIA/Caltech)
Bryan Catanzaro (NVIDIA)
More from the Same Authors
-
2021 : A Closer Look at Distribution Shifts and Out-of-Distribution Generalization on Graphs »
Mucong Ding · Kezhi Kong · Jiuhai Chen · John Kirchenbauer · Micah Goldblum · David P Wipf · Furong Huang · Tom Goldstein -
2021 : Diurnal or Nocturnal? Federated Learning from Periodically Shifting Distributions »
Chen Zhu · Zheng Xu · Mingqing Chen · Jakub Konečný · Andrew S Hard · Tom Goldstein -
2021 : Learning Revenue-Maximizing Auctions With Differentiable Matching »
Michael Curry · Uro Lyi · Tom Goldstein · John P Dickerson -
2021 : Learning Revenue-Maximizing Auctions With Differentiable Matching »
Michael Curry · Uro Lyi · Tom Goldstein · John P Dickerson -
2022 : Retrieval-based Controllable Molecule Generation »
Jack Wang · Weili Nie · Zhuoran Qiao · Chaowei Xiao · Richard Baraniuk · Anima Anandkumar -
2022 : MoleculeCLIP: Learning Transferable Molecule Multi-Modality Models via Natural Language »
Shengchao Liu · Weili Nie · Chengpeng Wang · Jiarui Lu · Zhuoran Qiao · Ling Liu · Jian Tang · Anima Anandkumar · Chaowei Xiao -
2022 : Calibration of Large Neural Weather Models »
Andre Graubner · Kamyar Azizzadenesheli · Jaideep Pathak · Morteza Mardani · Mike Pritchard · Karthik Kashinath · Anima Anandkumar -
2022 : FourCastNet: A practical introduction to a state-of-the-art deep learning global weather emulator »
Jaideep Pathak · Shashank Subramanian · Peter Harrington · Thorsten Kurth · Andre Graubner · Morteza Mardani · David Hall · Karthik Kashinath · Anima Anandkumar -
2022 : Robust Trajectory Prediction against Adversarial Attacks »
Yulong Cao · Danfei Xu · Xinshuo Weng · Zhuoqing Morley Mao · Anima Anandkumar · Chaowei Xiao · Marco Pavone -
2022 : AdvDO: Realistic Adversarial Attacks for Trajectory Prediction »
Yulong Cao · Chaowei Xiao · Anima Anandkumar · Danfei Xu · Marco Pavone -
2022 : Multi-objective Reinforcement Learning with Adaptive Pareto Reset for Prefix Adder Design »
Jialin Song · Rajarshi Roy · Jonathan Raiman · Robert Kirby · Neel Kant · Saad Godil · Bryan Catanzaro -
2022 : Calibration of Large Neural Weather Models »
Andre Graubner · Kamyar Azizzadenesheli · Jaideep Pathak · Morteza Mardani · Mike Pritchard · Karthik Kashinath · Anima Anandkumar -
2022 Workshop: Trustworthy and Socially Responsible Machine Learning »
Huan Zhang · Linyi Li · Chaowei Xiao · J. Zico Kolter · Anima Anandkumar · Bo Li -
2022 Poster: Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language Models »
Manli Shu · Weili Nie · De-An Huang · Zhiding Yu · Tom Goldstein · Anima Anandkumar · Chaowei Xiao -
2022 Poster: Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors »
Ravid Shwartz-Ziv · Micah Goldblum · Hossein Souri · Sanyam Kapoor · Chen Zhu · Yann LeCun · Andrew Wilson -
2022 Poster: Exploring the Limits of Domain-Adaptive Training for Detoxifying Large-Scale Language Models »
Boxin Wang · Wei Ping · Chaowei Xiao · Peng Xu · Mostofa Patwary · Mohammad Shoeybi · Bo Li · Anima Anandkumar · Bryan Catanzaro -
2022 Poster: Factuality Enhanced Language Models for Open-Ended Text Generation »
Nayeon Lee · Wei Ping · Peng Xu · Mostofa Patwary · Pascale N Fung · Mohammad Shoeybi · Bryan Catanzaro -
2021 : A Closer Look at Distribution Shifts and Out-of-Distribution Generalization on Graphs »
Mucong Ding · Kezhi Kong · Jiuhai Chen · John Kirchenbauer · Micah Goldblum · David P Wipf · Furong Huang · Tom Goldstein -
2021 Poster: Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks »
Avi Schwarzschild · Eitan Borgnia · Arjun Gupta · Furong Huang · Uzi Vishkin · Micah Goldblum · Tom Goldstein -
2021 Poster: VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization »
Mucong Ding · Kezhi Kong · Jingling Li · Chen Zhu · John Dickerson · Furong Huang · Tom Goldstein -
2021 Poster: Controllable and Compositional Generation with Latent-Space Energy-Based Models »
Weili Nie · Arash Vahdat · Anima Anandkumar -
2021 Poster: GradInit: Learning to Initialize Neural Networks for Stable and Efficient Training »
Chen Zhu · Renkun Ni · Zheng Xu · Kezhi Kong · W. Ronny Huang · Tom Goldstein -
2021 Poster: AugMax: Adversarial Composition of Random Augmentations for Robust Training »
Haotao Wang · Chaowei Xiao · Jean Kossaifi · Zhiding Yu · Anima Anandkumar · Zhangyang Wang -
2021 Poster: Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds »
Yujia Huang · Huan Zhang · Yuanyuan Shi · J. Zico Kolter · Anima Anandkumar -
2021 Poster: Gradient-Free Adversarial Training Against Image Corruption for Learning-based Steering »
Yu Shen · Laura Zheng · Manli Shu · Weizi Li · Tom Goldstein · Ming Lin -
2021 Poster: Coupled Segmentation and Edge Learning via Dynamic Graph Propagation »
Zhiding Yu · Rui Huang · Wonmin Byeon · Sifei Liu · Guilin Liu · Thomas Breuel · Anima Anandkumar · Jan Kautz -
2021 Poster: Adversarial Examples Make Strong Poisons »
Liam Fowl · Micah Goldblum · Ping-yeh Chiang · Jonas Geiping · Wojciech Czaja · Tom Goldstein -
2021 Poster: Center Smoothing: Certified Robustness for Networks with Structured Outputs »
Aounon Kumar · Tom Goldstein -
2021 Poster: Encoding Robustness to Image Style via Adversarial Feature Perturbations »
Manli Shu · Zuxuan Wu · Micah Goldblum · Tom Goldstein -
2021 Poster: Adversarially Robust 3D Point Cloud Recognition Using Self-Supervisions »
Jiachen Sun · Yulong Cao · Christopher B Choy · Zhiding Yu · Anima Anandkumar · Zhuoqing Morley Mao · Chaowei Xiao -
2021 Poster: SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers »
Enze Xie · Wenhai Wang · Zhiding Yu · Anima Anandkumar · Jose M. Alvarez · Ping Luo -
2020 : Invited Speaker: Bryan Catanzaro »
Bryan Catanzaro -
2020 : The Intrinsic Dimension of Images and Its Impact on Learning »
Chen Zhu · Micah Goldblum · Ahmed Abdelkader · Tom Goldstein · Phillip Pope -
2020 Poster: Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations »
Huan Zhang · Hongge Chen · Chaowei Xiao · Bo Li · Mingyan Liu · Duane Boning · Cho-Jui Hsieh -
2020 Spotlight: Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations »
Huan Zhang · Hongge Chen · Chaowei Xiao · Bo Li · Mingyan Liu · Duane Boning · Cho-Jui Hsieh -
2020 Poster: Large-Scale Adversarial Training for Vision-and-Language Representation Learning »
Zhe Gan · Yen-Chun Chen · Linjie Li · Chen Zhu · Yu Cheng · Jingjing Liu -
2020 Spotlight: Large-Scale Adversarial Training for Vision-and-Language Representation Learning »
Zhe Gan · Yen-Chun Chen · Linjie Li · Chen Zhu · Yu Cheng · Jingjing Liu -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2017 Poster: Deep Voice 2: Multi-Speaker Neural Text-to-Speech »
Andrew Gibiansky · Sercan Arik · Gregory Diamos · John Miller · Kainan Peng · Wei Ping · Jonathan Raiman · Yanqi Zhou -
2017 Spotlight: Deep Voice 2: Multi-Speaker Neural Text-to-Speech »
Andrew Gibiansky · Sercan Arik · Gregory Diamos · John Miller · Kainan Peng · Wei Ping · Jonathan Raiman · Yanqi Zhou