Timezone: »
Optimal decision making requires that classifiers produce uncertainty estimates consistent with their empirical accuracy. However, deep neural networks are often under- or over-confident in their predictions. Consequently, methods have been developed to improve the calibration of their predictive uncertainty both during training and post-hoc. In this work, we propose differentiable losses to improve calibration based on a soft (continuous) version of the binning operation underlying popular calibration-error estimators. When incorporated into training, these soft calibration losses achieve state-of-the-art single-model ECE across multiple datasets with less than 1% decrease in accuracy. For instance, we observe an 82% reduction in ECE (70% relative to the post-hoc rescaled ECE) in exchange for a 0.7% relative decrease in accuracy relative to the cross entropy baseline on CIFAR-100.When incorporated post-training, the soft-binning-based calibration error objective improves upon temperature scaling, a popular recalibration method. Overall, experiments across losses and datasets demonstrate that using calibration-sensitive procedures yield better uncertainty estimates under dataset shift than the standard practice of using a cross entropy loss and post-hoc recalibration methods.
Author Information
Archit Karandikar (Google)
Nicholas Cain (Allen Institute for Brain Science)
Dustin Tran (Google Brain)
Balaji Lakshminarayanan (Google Brain)
Jonathon Shlens (Google)
Michael Mozer (Google Research / University of Colorado)
Becca Roelofs (Google Research)
More from the Same Authors
-
2021 Spotlight: Revisiting ResNets: Improved Training and Scaling Strategies »
Irwan Bello · William Fedus · Xianzhi Du · Ekin Dogus Cubuk · Aravind Srinivas · Tsung-Yi Lin · Jonathon Shlens · Barret Zoph -
2021 : Systematic Evaluation of Causal Discovery in Visual Model Based Reinforcement Learning »
Nan Rosemary Ke · Aniket Didolkar · Sarthak Mittal · Anirudh Goyal · Guillaume Lajoie · Stefan Bauer · Danilo Jimenez Rezende · Yoshua Bengio · Chris Pal · Michael Mozer -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : Do ImageNet Classifiers Generalize to ImageNet? »
Benjamin Recht · Becca Roelofs · Ludwig Schmidt · Vaishaal Shankar -
2021 : Evaluating Machine Accuracy on ImageNet »
Vaishaal Shankar · Becca Roelofs · Horia Mania · Benjamin Recht · Ludwig Schmidt -
2021 : Understanding and Improving Robustness of VisionTransformers through patch-based NegativeAugmentation »
Yao Qin · Chiyuan Zhang · Ting Chen · Balaji Lakshminarayanan · Alex Beutel · Xuezhi Wang -
2021 : BEDS-Bench: Behavior of EHR-models under Distributional Shift - A Benchmark »
Anand Avati · Martin Seneviratne · Yuan Xue · Zhen Xu · Balaji Lakshminarayanan · Andrew Dai -
2021 : Reliable Graph Neural Networks for Drug Discovery Under Distributional Shift »
Kehang Han · Balaji Lakshminarayanan · Jeremiah Liu -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : Learning Neural Causal Models with Active Interventions »
Nino Scherrer · Olexa Bilaniuk · Yashas Annadani · Anirudh Goyal · Patrick Schwab · Bernhard Schölkopf · Michael Mozer · Yoshua Bengio · Stefan Bauer · Nan Rosemary Ke -
2021 : Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning »
Zachary Nado · Neil Band · Mark Collier · Josip Djolonga · Mike Dusenberry · Sebastian Farquhar · Qixuan Feng · Angelos Filos · Marton Havasi · Rodolphe Jenatton · Ghassen Jerfel · Jeremiah Liu · Zelda Mariet · Jeremy Nixon · Shreyas Padhy · Jie Ren · Tim G. J. Rudner · Yeming Wen · Florian Wenzel · Kevin Murphy · D. Sculley · Balaji Lakshminarayanan · Jasper Snoek · Yarin Gal · Dustin Tran -
2021 : Deep Classifiers with Label Noise Modeling and Distance Awareness »
Vincent Fortuin · Mark Collier · Florian Wenzel · James Allingham · Jeremiah Liu · Dustin Tran · Balaji Lakshminarayanan · Jesse Berent · Rodolphe Jenatton · Effrosyni Kokiopoulou -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2022 : Neural Network Online Training with Sensitivity to Multiscale Temporal Structure »
Matt Jones · Tyler Scott · Gamaleldin Elsayed · Mengye Ren · Katherine Hermann · David Mayo · Michael Mozer -
2022 : Out-of-Distribution Detection and Selective Generation for Conditional Language Models »
Jie Ren · Jiaming Luo · Yao Zhao · Kundan Krishna · Mohammad Saleh · Balaji Lakshminarayanan · Peter Liu -
2022 : Reliability benchmarks for image segmentation »
Estefany Kelly Buchanan · Michael Dusenberry · Jie Ren · Kevin Murphy · Balaji Lakshminarayanan · Dustin Tran -
2022 : Pushing the Accuracy-Fairness Tradeoff Frontier with Introspective Self-play »
Jeremiah Liu · Krishnamurthy Dvijotham · Jihyeon Lee · Quan Yuan · Martin Strobel · Balaji Lakshminarayanan · Deepak Ramachandran -
2022 : An Empirical Study on Clustering Pretrained Embeddings: Is Deep Strictly Better? »
Tyler Scott · Ting Liu · Michael Mozer · Andrew Gallagher -
2022 : Improving Zero-shot Generalization and Robustness of Multi-modal Models »
Yunhao Ge · Jie Ren · Ming-Hsuan Yang · Yuxiao Wang · Andrew Gallagher · Hartwig Adam · Laurent Itti · Balaji Lakshminarayanan · Jiaping Zhao -
2022 : Improving the Robustness of Conditional Language Models by Detecting and Removing Input Noise »
Kundan Krishna · Yao Zhao · Jie Ren · Balaji Lakshminarayanan · Jiaming Luo · Mohammad Saleh · Peter Liu -
2022 : Out-of-Distribution Detection and Selective Generation for Conditional Language Models »
Jie Ren · Jiaming Luo · Yao Zhao · Kundan Krishna · Mohammad Saleh · Balaji Lakshminarayanan · Peter Liu -
2022 Poster: SAVi++: Towards End-to-End Object-Centric Learning from Real-World Videos »
Gamaleldin Elsayed · Aravindh Mahendran · Sjoerd van Steenkiste · Klaus Greff · Michael Mozer · Thomas Kipf -
2022 Poster: Understanding and Improving Robustness of Vision Transformers through Patch-based Negative Augmentation »
Yao Qin · Chiyuan Zhang · Ting Chen · Balaji Lakshminarayanan · Alex Beutel · Xuezhi Wang -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 Poster: Exploring the Limits of Out-of-Distribution Detection »
Stanislav Fort · Jie Ren · Balaji Lakshminarayanan -
2021 Poster: Improving Anytime Prediction with Parallel Cascaded Networks and a Temporal-Difference Loss »
Michael Iuzzolino · Michael Mozer · Samy Bengio -
2021 Poster: Neural Production Systems »
Anirudh Goyal · Aniket Didolkar · Nan Rosemary Ke · Charles Blundell · Philippe Beaudoin · Nicolas Heess · Michael Mozer · Yoshua Bengio -
2021 Poster: Discrete-Valued Neural Communication »
Dianbo Liu · Alex Lamb · Kenji Kawaguchi · Anirudh Goyal · Chen Sun · Michael Mozer · Yoshua Bengio -
2021 Poster: Revisiting the Calibration of Modern Neural Networks »
Matthias Minderer · Josip Djolonga · Rob Romijnders · Frances Hubis · Xiaohua Zhai · Neil Houlsby · Dustin Tran · Mario Lucic -
2021 Poster: Revisiting ResNets: Improved Training and Scaling Strategies »
Irwan Bello · William Fedus · Xianzhi Du · Ekin Dogus Cubuk · Aravind Srinivas · Tsung-Yi Lin · Jonathon Shlens · Barret Zoph -
2020 Poster: Bayesian Deep Ensembles via the Neural Tangent Kernel »
Bobby He · Balaji Lakshminarayanan · Yee Whye Teh -
2020 Poster: Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness »
Jeremiah Liu · Zi Lin · Shreyas Padhy · Dustin Tran · Tania Bedrax Weiss · Balaji Lakshminarayanan -
2020 Poster: RandAugment: Practical Automated Data Augmentation with a Reduced Search Space »
Ekin Dogus Cubuk · Barret Zoph · Jonathon Shlens · Quoc V Le -
2020 Tutorial: (Track2) Practical Uncertainty Estimation and Out-of-Distribution Robustness in Deep Learning Q&A »
Dustin Tran · Balaji Lakshminarayanan · Jasper Snoek -
2020 Tutorial: (Track2) Practical Uncertainty Estimation and Out-of-Distribution Robustness in Deep Learning »
Dustin Tran · Balaji Lakshminarayanan · Jasper Snoek -
2019 Poster: A Fourier Perspective on Model Robustness in Computer Vision »
Dong Yin · Raphael Gontijo Lopes · Jonathon Shlens · Ekin Dogus Cubuk · Justin Gilmer -
2019 Poster: Stand-Alone Self-Attention in Vision Models »
Niki Parmar · Prajit Ramachandran · Ashish Vaswani · Irwan Bello · Anselm Levskaya · Jonathon Shlens -
2019 Poster: Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift »
Jasper Snoek · Yaniv Ovadia · Emily Fertig · Balaji Lakshminarayanan · Sebastian Nowozin · D. Sculley · Joshua Dillon · Jie Ren · Zachary Nado -
2019 Poster: Likelihood Ratios for Out-of-Distribution Detection »
Jie Ren · Peter Liu · Emily Fertig · Jasper Snoek · Ryan Poplin · Mark Depristo · Joshua Dillon · Balaji Lakshminarayanan -
2019 Poster: A Meta-Analysis of Overfitting in Machine Learning »
Becca Roelofs · Vaishaal Shankar · Benjamin Recht · Sara Fridovich-Keil · Moritz Hardt · John Miller · Ludwig Schmidt -
2018 : TBC 8 »
Balaji Lakshminarayanan -
2018 Poster: Searching for Efficient Multi-Scale Architectures for Dense Image Prediction »
Liang-Chieh Chen · Maxwell Collins · Yukun Zhu · George Papandreou · Barret Zoph · Florian Schroff · Hartwig Adam · Jonathon Shlens -
2017 Poster: Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles »
Balaji Lakshminarayanan · Alexander Pritzel · Charles Blundell -
2017 Spotlight: Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles »
Balaji Lakshminarayanan · Alexander Pritzel · Charles Blundell -
2015 : Mondrian Forests for Large-Scale regression when uncertainty matters »
Balaji Lakshminarayanan -
2015 : Variational Gaussian Process »
Dustin Tran -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2015 Poster: Copula variational inference »
Dustin Tran · David Blei · Edo M Airoldi -
2014 Poster: Distributed Bayesian Posterior Sampling via Moment Sharing »
Minjie Xu · Balaji Lakshminarayanan · Yee Whye Teh · Jun Zhu · Bo Zhang -
2014 Poster: Mondrian Forests: Efficient Online Random Forests »
Balaji Lakshminarayanan · Daniel Roy · Yee Whye Teh -
2013 Poster: DeViSE: A Deep Visual-Semantic Embedding Model »
Andrea Frome · Greg Corrado · Jonathon Shlens · Samy Bengio · Jeff Dean · Marc'Aurelio Ranzato · Tomas Mikolov -
2013 Demonstration: DeViSE: A Deep Visual-Semantic Embedding Model »
Jonathon Shlens · Andrea Frome