Timezone: »
Many experts argue that the future of artificial intelligence is limited by the field’s ability to integrate symbolic logical reasoning into deep learning architectures. The recently proposed differentiable MAXSAT solver, SATNet, was a breakthrough in its capacity to integrate with a traditional neural network and solve visual reasoning problems. For instance, it can learn the rules of Sudoku purely from image examples. Despite its success, SATNet was shown to succumb to a key challenge in neurosymbolic systems known as the Symbol Grounding Problem: the inability to map visual inputs to symbolic variables without explicit supervision ("label leakage"). In this work, we present a self-supervised pre-training pipeline that enables SATNet to overcome this limitation, thus broadening the class of problems that SATNet architectures can solve to include datasets where no intermediary labels are available at all. We demonstrate that our method allows SATNet to attain full accuracy even with a harder problem setup that prevents any label leakage. We additionally introduce a proofreading method that further improves the performance of SATNet architectures, beating the state-of-the-art on Visual Sudoku.
Author Information
Sever Topan (McGill University)
David Rolnick (McGill / Mila)
Xujie Si (University of Pennsylvania)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Techniques for Symbol Grounding with SATNet »
Fri. Dec 10th 12:30 -- 02:00 AM Room
More from the Same Authors
-
2021 : ClimART: A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models »
Salva Rühling Cachay · Venkatesh Ramesh · Jason Cole · Howard Barker · David Rolnick -
2021 : Scallop: From Probabilistic Deductive Databases to Scalable Differentiable Reasoning »
Jiani Huang · Ziyang Li · Binghong Chen · Karan Samel · Mayur Naik · Le Song · Xujie Si -
2021 : ClimART: A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models »
Salva Rühling Cachay · Venkatesh Ramesh · Jason N. S. Cole · Howard Barker · David Rolnick -
2021 : Detecting Abandoned Oil Wells Using Machine Learning and Semantic Segmentation »
Michelle Lin · David Rolnick -
2022 : Physics-Constrained Deep Learning for Climate Downscaling »
Paula Harder · Qidong Yang · Venkatesh Ramesh · Prasanna Sattigeri · Alex Hernandez-Garcia · Campbell Watson · Daniela Szwarcman · David Rolnick -
2022 : Generating physically-consistent high-resolution climate data with hard-constrained neural networks »
Paula Harder · Qidong Yang · Venkatesh Ramesh · Prasanna Sattigeri · Alex Hernandez-Garcia · Campbell Watson · Daniela Szwarcman · David Rolnick -
2022 : PhAST: Physics-Aware, Scalable, and Task-specific GNNs for accelerated catalyst design »
ALEXANDRE DUVAL · Victor Schmidt · Alex Hernandez-Garcia · Santiago Miret · Yoshua Bengio · David Rolnick -
2023 Poster: Normalization Layers Are All That Sharpness-Aware Minimization Needs »
Maximilian Mueller · Tiffany Vlaar · David Rolnick · Matthias Hein -
2023 Poster: SatBird: a Dataset for Bird Species Distribution Modeling using Remote Sensing and Citizen Science Data »
Mélisande Teng · Amna Elmustafa · Benjamin Akera · Hager Radi · Yoshua Bengio · Hugo Larochelle · David Rolnick -
2023 Poster: ClimateSet: A Large-Scale Climate Model Dataset for Machine Learning »
Julia Kaltenborn · Charlotte Lange · Venkatesh Ramesh · Philippe Brouillard · Yaniv Gurwicz · Jakob Runge · Peer Nowack · David Rolnick -
2022 Poster: Understanding the Evolution of Linear Regions in Deep Reinforcement Learning »
Setareh Cohan · Nam Hee Kim · David Rolnick · Michiel van de Panne -
2021 : ClimART: A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models »
Salva Rühling Cachay · Venkatesh Ramesh · Jason N. S. Cole · Howard Barker · David Rolnick -
2021 : Detecting Abandoned Oil Wells Using Machine Learning and Semantic Segmentation »
Michelle Lin · David Rolnick -
2021 Poster: Scallop: From Probabilistic Deductive Databases to Scalable Differentiable Reasoning »
Jiani Huang · Ziyang Li · Binghong Chen · Karan Samel · Mayur Naik · Le Song · Xujie Si -
2020 Workshop: Tackling Climate Change with ML »
David Dao · Evan Sherwin · Priya Donti · Lauren Kuntz · Lynn Kaack · Yumna Yusuf · David Rolnick · Catherine Nakalembe · Claire Monteleoni · Yoshua Bengio